首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the synthesis, characterization by DT-TGA and IR, single crystal X-ray nuclear structure at 300 K, nuclear and magnetic structure from neutron powder diffraction on a deuterated sample at 1.4 K, and magnetic properties as a function of temperature and magnetic field of Ni(3)(OH)(2)(SO(4))(2)(H(2)O)(2). The structure is formed of chains, parallel to the c-axis, of edge-sharing Ni(1)O(6) octahedra, connected by the corners of Ni(2)O(6) octahedra to form corrugated sheets along the bc-plane. The sheets are connected to one another by the sulfate groups to form the 3D network. The magnetic properties measured by ac and dc magnetization, isothermal magnetization at 2 K, and heat capacity are characterized by a transition from a paramagnet (C = 3.954 emu K/mol and theta = -31 K) to a canted antiferromagnet at T(N) = 29 K with an estimated canting angle of 0.2-0.3 degrees. Deduced from powder neutron diffraction data, the magnetic structure is modeled by alternate pairs of Ni(1) within a chain having their moments pointing along [010] and [010], respectively. The moments of Ni(2) atoms are oppositely oriented with respect to their adjacent pairs. The resulting structure is that of a compensated arrangement of moments within one layer, comprising one ferromagnetic and three antiferromagnetic superexchange pathways between the nickel atoms.  相似文献   

2.
We report the syntheses, crystal structures, and magnetic properties of KMn(2)(H(3)O(2))(MoO(4))(2) (MnH), KMn(2)(D(3)O(2))(MoO(4))(2) (MnD), KFe(2)(H(3)O(2))(MoO(4))(2) (FeH), KFe(2)(D(3)O(2))(MoO(4))(2) (FeD), KCo(2)(H(3)O(2))(MoO(4))(2) (CoH), and KCo(2)(D(3)O(2))(MoO(4))(2) (CoD), and the magnetic structures of MnD and FeD. They belong to the structural variant (space group I2/m) of the mineral natrochalcite NaCu(2)(H(3)O(2))(SO(4))(2) (space group C2/m) where the diagonal within the ac-plane of the latter become one axis of the former. The structure of MnD, obtained from Rietveld refinement of a high-resolution neutron pattern taken at 300 K, consists of chains of edge-sharing octahedra bridged by MoO(4) and D(3)O(2) to form layers, which are connected to K through the oxygen atoms to form the three-dimensional (3D)-network. The X-ray powder diffraction patterns of the other two compounds were found to belong to the same space group with similar parameters. The magnetic susceptibilities of MnH and FeH exhibit long-range ordering of the moments at a Ne?el temperature of 8 and 11 K, respectively, which are accompanied by additional strong Bragg reflections in the neutron diffraction in the ordered state, consistent with antiferromagnetism. Analyses of the neutron data for MnD and FeD reveal the presence of both long- and short-range orderings and commensurate magnetic structures with a propagation vector of (?, 0, ?). The moments are antiferromagnetically ordered within the chains with alternation between chains to generate four nonequivalent nuclear unit cells. For MnD the moments are perpendicular to the chain axis (b-axis) while for FeD they are parallel to the b-axis. The overall total is a fully compensated magnetic structure with zero moment in each case. Surprisingly, for KCo(2)(D(3)O(2))(MoO(4))(2) neither additional peaks nor increase of the nuclear peaks' intensities were observed in the neutron diffraction patterns below the magnetic anomaly at 12 K which was identified to originate from a small quantity of a ferromagnetic compound, Co(2)(OH)(2)MoO(4).  相似文献   

3.
The synthesis of a series of selenate containing natrochalcite, A(I)M(II)(2)(H(3)O(2))(SeO(4))(2) where A = Na or K and M = Mn, Co, or Ni (here labeled as AMH and AMD for the hydrogenated and deuterated compounds, respectively), the X-ray crystal structure determinations from single crystals (Ni) and powder (Mn), magnetic properties, and magnetic structures of the cobalt analogues are reported. The nuclear crystal structures for NaNiH, KNiH, and KMnH are similar to those reported for the cobalt analogues (NaCoH and KCoH) and consist of chains of edge-sharing octahedra (MO(6)) which are connected by H(3)O(2) and SeO(4) to form layers which are in turn bridged by the alkali, in an octahedral coordination site, to form the 3D-framework. The magnetic properties are characterized by antiferromagnetic interaction at high temperatures and antiferromagnetic ordering at low temperatures (NaCoH, 3.5 K; KCoH, 5.9 K; KNiH, 8.5 K; and KMnH, 16 K), except for KNi(2)(H(3)O(2))(SeO(4))(2) which displays a weak ferromagnetic interaction and no long-range ordering above 2 K. The neutron magnetic structures of the cobalt analogues, studied as a function of temperature, are different for the two cobalt salts and also different from all the known magnetic structures of the natrochalcite family. Whereas the magnetic structure of NaCoD has a k = (0, 0, 0), that of KCoD has one consisting of a doubled nuclear cell, k = (0, 0, 1/2). Both compounds have four magnetic sublattices related to the four cobalt atoms of the nuclear unit cell. In NaCoD the moments are in the bc-plane, M(y) = 2.51(2) μ(B) and M(z) = 1.29(4) μ(B), with the major component along the cobalt chain and the resultant moment, 2.83(3) μ(B), making an angle of 27° with the b-axis. The sum of the moments within the cell is zero. For KCoD the moment at each cobalt site has a component along each crystallographic axis, M(x) = 2.40(3), M(y) = 1.03(3), M(z) = 1.59(8) giving a total M = 2.49(3) μ(B). Within one nuclear cell the moments are fully compensated. The moments corresponding to the cobalt atoms of the second nuclear cell comprising the magnetic unit cell are oriented in opposite directions.  相似文献   

4.
The synthesis, structure and magnetic properties of the one-dimensional chain compounds [Mn(cyclam)(SO4)]ClO4.H2O (1) and [Mn(cyclam)(HCOO)](CF3SO3)(ClO4) (2) are reported. Cyclam is the cyclic tetradentate ligand 1,4,7,11-tetraazacyclotetradecane. Both chain compounds exhibit antiferromagnetic interactions within the chains. A magnetic ordering phase transition at 5.5 K in (1) is investigated by magnetisation measurements along the three principal crystallographic axes of a single crystal and the results show unambiguously that the ferromagnetic ordering is only taking place along one crystallographic axis. The spin structure of the magnetic ordered phase and the magnitude of the ferromagnetic moment are correlated with the crystal structure and symmetry of the compound.  相似文献   

5.
The structures (nuclear and magnetic), magnetic properties (2-300 K, 1-10(4) bar), and heat capacity of the layered ferromagnet Co5(OH)6(SO4)2(H2O)4 are reported. The crystal structure consists of brucite-like M(II)-OH layers of edge-sharing octahedra, but having two different Co sites, which are pillared by ...O3SO-Co(H2O)4-OSO3.... The absorption spectrum confirms the presence of divalent Co, and by comparison of the two isotopic materials, the assignment of the vibrational spectra is proposed. The magnetic properties are those of a ferromagnet with a Curie temperature of 14 K. Temperature and field dependence magnetization data taken on an aligned sample suggest an easy-plane magnet. The Curie temperature increases linearly with pressure at a rate of +0.12 K/kbar, suggesting small progressive and uniform modifications of the Co-Co exchange interactions. Rietveld refinement of the neutron powder diffraction data and consideration of a group analysis reveal the direction of the moments of the Co within the layer to be along the b-axis, with a maximum moment of 3.33 micro(B) per cobalt. Those of the pillars remain random. Estimation of the entropy from the heat capacity data accounts for the presence of four ordered moments of Co with spin 1/2 at the long-range ordering temperature, while the moment of the pillaring Co contributes only at lower temperature due to the increase of the internal field as the temperature is lowered. The purely 2D-magnetic ordering in an easy-plane magnet, evidenced by neutron diffraction and heat capacity, challenges the existing theories and is a rare example of a single-layer magnet.  相似文献   

6.
The syntheses, crystal structures, and magnetic properties of [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (2), (NMe(4))[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (3), and (NMe(4))(2)[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (4) are reported. Complex 2 displays quasi-reversible redox couples when examined by cyclic voltammetry in CH(2)Cl(2): one-electron reductions are observed at 0.64 and 0.30 V vs ferrocene. The reaction of complex 2 with 1 and 2 equiv of NMe(4)I yields the one- and two-electron reduced analogues, 3 and 4, respectively. Complexes 2.3CH(2)Cl(2), 3.4.5CH(2)Cl(2).(1)/(2)H(2)O, and 4.6C(7)H(8) crystallize in the triclinic P, monoclinic P2/c, and monoclinic C2/c space groups, respectively. The molecular structures are all very similar, consisting of a central [Mn(IV)O(4)] cubane surrounded by a nonplanar alternating ring of eight Mn and eight mu(3)-O(2)(-) ions. Peripheral ligation is provided by 16 bridging C(6)F(5)CO(2)(-) and 4 H(2)O ligands. Bond valence sum calculations establish that the added electrons in 3 and 4 are localized on former Mn(III) ions giving trapped-valence Mn(IV)(4)Mn(III)(7)Mn(II) and Mn(IV)(4)Mn(III)(6)Mn(II)(2) anions, respectively. (19)F NMR spectroscopy in CD(2)Cl(2) shows retention of the solid-state structure upon dissolution and detrapping of the added electrons in 3 and 4 among the outer ring of Mn ions on the (19)F NMR time scale. DC studies on dried microcrystalline samples of 2, 3, and 4.2.5C(7)H(8) restrained in eicosane in the 1.80-10.0 K and 1-70 kG ranges were fit to give S = 10, D = -0.40 cm(-)(1), g = 1.87, D/g = 0.21 cm(-)(1) for 2, S = 19/2, D = -0.34 cm(-)(1), g = 2.04, D/g = 0.17 cm(-)(1) for 3, and S = 10, D = -0.29 cm(-)(1), g = 2.05, D/g = 0.14 cm(-)(1) for 4, where D is the axial zero-field splitting parameter. The clusters exhibit out-of-phase AC susceptibility signals (chi(M)' ') indicative of slow magnetization relaxation in the 6-8 K range for 2, 4-6 K range for 3, and 2-4 K range for 4; the shift to lower temperatures reflects the decreasing magnetic anisotropy upon successive reduction and, hence, the decreasing energy barrier to magnetization relaxation. Relaxation rate vs T data obtained from chi(M)' ' vs AC oscillation frequency studies down to 1.8 K were combined with rate vs T data from DC magnetization decay vs time measurements at lower temperatures to generate an Arrhenius plot from which the effective barrier (U(eff)) to magnetization reversal was obtained; the U(eff) values are 59 K for 2, 49 and 21 K for the slower- and faster-relaxing species of 3, respectively, and 25 K for 4. Hysteresis loops obtained from single-crystal magnetization vs DC field scans are typical of single-molecule magnets with the coercivities increasing with decreasing T and increasing field sweep rate and containing steps caused by the quantum tunneling of magnetization (QTM). The step separations gave D/g values of 0.22 cm(-)(1) for 2, 0.15 and 0.042 cm(-)(1) for the slower- and faster-relaxing species of 3, and 0.15 cm(-)(1) for 4.  相似文献   

7.
The reaction of manganese acetate with octacyanotungastate in an aqueous solution of concentrated acetic acid gives two new three-dimensional cyano-bridged manganese(II)-tungstate(V) bimetallic assemblies, [Mn(II)(2)(H(2)O)(2)(CH(3)COO)][W(V)(CN)(8)].2H(2)O (1) (tetragonal space group I4/mcm, a = b = 11.9628(9) A, c = 13.367(2) A, and Z = 4) and Cs(I)(0.5)Mn(II)(2)[W(V)(CN)(8)](CH(3)CO(2))(1.5).H(2)O (2) (monoclinic space group C2/c, a = 16.274(2) A, b = 22.948(6) A, c = 13.196(1) A, beta = 128.040(6) degrees, and Z = 8). In complex 1, W(V)(CN)(8) adopts a square antiprismatic geometry, and each CN group coordinates to the Mn(II) ions forming W-Mn(4)-W-Mn(4)-...columnar linkages where four sites on the Mn(II) ion with octahedral geometry are occupied by CN groups. The columns are parallel and interlock, yielding a network structure. Complex 2 contains two different coordination geometries for W(V)(CN)(8), namely, square antiprismatic and dodecahedral. The columnar structures appear also in 2, where the Mn(II) ions in two different environments provide three and four coordinated sites to the CN groups. The columns are bridged by both dodecahedral W(V)(CN)(8) groups and acetates. Cs ions were intercalated in the lattice by the formation of short attractive contacts with the acetates. The field-cooled magnetization, ac susceptibility, and the field dependence of magnetization measurements show that both 1 and 2 are ferrimagnets with ordering temperatures 40 and 45 K, respectively. The investigation of the magnetostructural correlation shows that the ferrimagnetic ordering in 1 and 2 are attributed to the dominant antiferromagnetic exchange pathways d(z)2(W)-d(x')(y')(Mn) and d(x)2(-y)2(W) - d(x')(y')(Mn).  相似文献   

8.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) (1; 3Mn(III)) with [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (2; 10Mn(III)) in MeCN affords the new mixed-valent complex [Mn(21)O(14)(OH)(2)(O(2)CMe)(16)(hmp)(8)(pic)(2)(py)(H(2)O)](ClO(4))(4) (3; 3Mn(II)-18Mn(III); hmp(-) is the anion of 2-(hydroxymethyl)pyridine), with an average Mn oxidation state of +2.85. Complex 3.7MeCN crystallizes in the triclinic space group P. The structure consists of a low symmetry [Mn(21)(micro(4)-O)(4)(micro(3)-O)(12)(micro-O)(16)] core, with peripheral ligation provided by 16 MeCO(2)(-), 8 hmp(-), and 2 pic(-) groups and one molecule each of water and pyridine. The magnetic properties of 3 were investigated by both dc and ac magnetic susceptibility measurements. Fitting of dc magnetization data collected in the 0.1-0.8 T and 1.8-4.0 K ranges gave S = (17)/(2), D approximately -0.086 cm(-)(1), and g approximately 1.8, where S is the molecular spin of the Mn(21) complex and D is the axial zero-field splitting parameter. ac susceptibility studies in the 10-997 Hz frequency range reveal the presence of a frequency-dependent out-of-phase ac magnetic susceptibility (chi(M)' ') signal consistent with slow magnetization relaxation rates. Fitting of dc magnetization decay versus time data to the Arrhenius equation gave a value of the effective barrier to relaxation (U(eff)) of 13.2 K. Magnetization versus applied dc field sweeps exhibited hysteresis. Thus, complex 3 is a new member of the small but growing family of single-molecule magnets.  相似文献   

9.
The magnetic properties and magnetic structures from neutron diffraction of two synthetic natrochalcites, NaM(II)2(H3O2)(MoO4)2, M = Co (1Co) or Ni (2Ni), are reported. They are isostructural (monoclinic C2/m) and consist of chains of edge-shared MO6 octahedra connected by mu-O from H3O2(-) and MoO4(2-). These chains form a three-dimensional network with O-H-O, O-Mo-O, and O-Na-O bridging 4, 3, and 4 metal ions, respectively. Both compounds behave as canted antiferromagnets but differ in their behaviors, 1Co showing a broad maximum (28 K) above the Neel transition (21 K) and the canting taking place at 13 K, some 8 K below T(N), while for 2Ni the canting takes place at T(N) (28 K). Analyses of the neutron powder diffraction data shed some light on the geometry of D3O2(-) and suggest antiferromagnetism with a propagation vector k = (0,0,0) with the moments within each chain being parallel but antiparallel to those in neighboring chains. The difference between 1Co and 2Ni is in the orientation of the moments; they are parallel to the chain axis (b-axis) for 1Co and perpendicular to it for 2Ni with a major component along the c-axis and a small one along the a-axis. The heat capacity data peak at 20.9(3) K (1Co) and 25.1(1) K (2Ni). The derived magnetic entropies, following correction of the lattice contribution using the measured data for the nonmagnetic Zn analogue, suggest S = 1/2 for 1Co but is lower than that expected for 2Ni (S = 1). In both cases, only ca. 60% of the entropy is found below the magnetic ordering temperature, suggesting considerable short-range correlations at higher temperatures. While the temperature at which the magnetic diffraction becomes observable coincides with that of at the peak in heat capacity, it is lower than T(N) observed by magnetization measurements in both cases, and there is evidence of short-range ordering in a narrow range of temperature (T(N) +/- 5 K).  相似文献   

10.
Two novel cyanide-bridged ferrimagnets, [Mn(4dmap)(4)](3)[M(CN)(6)](2)- 10 H(2)O (4dmap=4-dimethylaminopyridine, M=Cr (1) and Mn (2)), have been prepared from the reaction of MnCl(2)4 H(2)O, a monodentate coligand (4dmap), with K(3)[M(CN)(6)]. X-ray crystallographic results show that these are isomorphous, and form a unique twofold interpenetrated three-dimensional framework with a triconnected 6.10(2) net. The framework contains two types of one-dimensional channel: hexagonal channels based on a cyanide-bridged Mn(6)M(6) hexagon, and triangle channels segmented by CN-Mn-NC linkages, which are filled with lattice water molecules. The dimethylamino groups of the 4dmap coligands are located around a pore and form the basic inner space. Variable-temperature X-ray powder diffraction and thermogravimetric analysis results show that the frameworks of both compounds are susceptible to dehydration through the loss of strongly hydrogen-bonded lattice water molecules. Magnetic measurements on both compounds show a ferrimagnetic ordering occurs at low temperature, T(C)=17 K for 1 and 6 K for 2. Application of hydrostatic pressure showed a positive effect on the magnetic ordering. Both values of T(C) increased linearly, to 25 K for 1 and 15 K for 2 at 1.0 GPa. The magnetic properties of both compounds were reversibly modulated by the external stress.  相似文献   

11.
Using dc magnetization, ac susceptibility, specific heat, and neutron diffraction, we have studied the magnetic properties of Mn[N(CN)2]2(pyz) (pyz = pyrazine) in detail. The material crystallizes in the monoclinic space group P2(1)/n with a = 7.3248(2), b = 16.7369(4), and c = 8.7905 (2) A, beta = 89.596 (2) degrees, V = 1077.65(7) A(3), and Z = 4, as determined by Rietveld refinement of neutron powder diffraction data at 1.35 K. The 5 K neutron powder diffraction data reflect very little variation in the crystal structure. Interpenetrating ReO3-like networks are formed from axially elongated Mn(2+) octahedra and edges made up of mu-bonded [N(CN)2](-) anions and neutral pyz ligands. A three-dimensional antiferromagnetic ordering occurs below T(N) = 2.53(2) K. The magnetic unit cell is double the nuclear one along the a- and c-axes, giving the (1/2, 0, 1/2) superstructure. The crystallographic and antiferromagnetic structures are commensurate and consist of collinear Mn(2+) moments, each with a magnitude of 4.15(6) mu(B) aligned parallel to the a-direction (Mn-pyz-Mn chains). Electronic structure calculations indicate that the exchange interaction is much stronger along the Mn-pyz-Mn chain axis than along the Mn-NCNCN-Mn axes by a factor of approximately 40, giving rise to a predominantly one-dimensional magnetic system. Thus, the variable-temperature magnetic susceptibility data are well described by a Heisenberg antiferromagnetic chain model, giving g = 2.01(1) and J/k(B) = -0.27(1) K. Owing to single-ion anisotropy of the Mn(2+) ion, field-induced phenomena ascribed to spin-flop and paramagnetic transitions are observed at 0.43 and 2.83 T, respectively.  相似文献   

12.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

13.
Two new coordination polymers comprised of Mn(2+), N(CN)(2)(-) (dicyanamide, herein denoted dca) and pyrimidine (pym) have been synthesized and structurally and magnetically characterized. Mn(dca)(2)(pym)(2), , crystallizes in the orthorhombic space group Pbcn and forms trans bi-bridged Mn-(micro(1,5)-dca)(2)-Mn ribbons that extend along the b-axis of the unit cell. Two terminally bonded pym ligands are trans-coordinated to the Mn center. Adjacent chains interdigitate in an undulating fashion presumably due to a templating effect imposed by the pym ligands where N-atoms of consecutive pym rings stack parallel to the chain axis. Mn(dca)(2)(pym)(H(2)O), , which crystallizes in the monoclinic space group P2(1)/c, has a unique interdigitated 2D network that consists of double-bridged [Mn(2)(dca)(2)(pym)(2)(H(2)O)(2)](2+)"dimers" that are connected via single-bridging dca ligands. Each MnN(5)O octahedron is comprised of a coordinated H(2)O, a monodentate pym ligand, and four micro(1,5)-bridging dca anions. The magnetic data for were fitted to a uniform antiferromagnetic chain model which yielded J/k(B) = -0.34(1) K. In contrast, is best described as an alternating chain owing to the presence of both single- and double-bridging dca anions; a least-squares fit afforded J(a) = -0.43(1) and J(b) = -0.20(2) K, respectively. A transition to long-range magnetic ordering was observed for below approximately 2.4 K in addition to a field-induced spin flop transition at 15.6 kOe (1.7 K).  相似文献   

14.
The syntheses, X-ray structures, and magnetic behaviors of two new cyano-bridged assemblies, the molecular [Mn(III)(salen)H2O]3[W(V)(CN)8].H2O (1) and one-dimensional [Mn(salen)(H2O)2]2[[Mn(salen)(H2O)][Mn(salen)]2[Mo(CN)(8)]].0.5ClO4.0.5OH.4.5H2O (2), are presented. Compound 1 crystallizes in the monoclinic system, has space group P2(1)/c, and has unit cell constants a = 13.7210(2) A, b = 20.6840(4) A, c = 20.6370(2) A, and Z = 4. Compound 2 crystallizes in the triclinic system, has space group P, and has unit cell dimensions a = 18.428(4) A, b = 18.521(3) A, c = 18.567(4) A, and Z = 2. The structure of 1 consists of the asymmetric V-shaped Mn-NC-W-NC-Mn-O(phenolate)-Mn molecules, where W(V) coordinates with [Mn(salen)H2O] and singly phenolate-bridged [Mn(salen)H2O]2 moieties through the neighboring cyano bridges. The [W(V)(CN)8]3- ion displays distorted square-antiprism geometry. The structure of 2 consists of the cyano-bridged [Mn3(III)Mo(IV)]n- repeating units linked by double phenolate bridges into one-dimensional zigzag chains. The Mn(III) centers are bound to Mo(IV) of square-antiprism geometry through the neighboring cyano bridges. The magnetic studies of 1 reveal the antiferromagnetic intramolecular interactions through the CN and phenolate bridges and the relatively weak intermolecular interactions. Compound 1 becomes antiferromagnetically ordered below TN = 4.6 K. The presence of the magnetic anisotropy is documented with the MH measurements carried out for both polycrystalline and single-crystal samples. At T = 1.9 K, the spin-flop transition is observed in the field of 18 kOe applied parallel to the bc plane, which is the easy plane of magnetization. Field dependence of magnetization of 1 shows field-induced metamagnetic behavior from the antiferromagnetic ground state of ST = 3/2 to the state of ST = 5/2. The magnetic properties of 2 indicate a weak antiferromagnetic interaction between Mn(III) centers in double-phenolate-bridged [Mn(III)(salen)]2 dinuclear subunits and a very weak ferromagnetic interaction between them through the diamagnetic [Mo(IV)(CN)8]4- spacer.  相似文献   

15.
Dimeric [Mn(salpn)NCS](2)(1) and polymeric [Mn(salpn)NCS](n)(2) are formed by the reaction of Mn(CH(3)CO(2))(2).4H(2)O, the schiff base, and thiocyanate. The formation of the two polymorphic forms is solvent and temperature dependent. 1: orthorhombic, space group Pbca, with a = 12.573(2) A, b = 13.970(7) A, c = 18.891(9) A, and Z = 8. 2: orthorhombic, space group Pna2(1), with a = 12.5277(14) A, b = 11.576(2) A, c = 11.513(2) A, and Z = 4. The dimers in 1 are held together by weak noncovalent S...pi (phenyl) interactions leading to a chain along the a-axis. Each monomeric unit of the polymer in 2 is related to its adjacent ones by a 2-fold screw axis leading to a helix along the c-axis. The exchange coupling is nondetectable in the dimer. The magnetic susceptibility of the helical chain fits a classical chain law with J = -3.2 cm(-1) and shows a weak ferromagnetic ordering below 7 K due to spin canting effects.  相似文献   

16.
Mn(II)(TCNE)I(OH(2)) was isolated from the reaction of tetracyanoethylene (TCNE) and MnI(2)(THF)(3), and has a 2-D structure possessing an unusual, asymmetric bonded μ(4)-[TCNE]˙(-). Direct antiferromagnetic coupling between the S = 5/2 Mn(II) and S = 1/2 [TCNE]˙(-) leads to magnetic ordering as a canted antiferrimagnet at a T(c) of 171 K.  相似文献   

17.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

18.
The reaction of Mn(II) and [NEt(4)]CN leads to the isolation of solvated [NEt(4)]Mn(3)(CN)(7) (1) and [NEt(4)](2) Mn(3)(CN)(8) (2), which have hexagonal unit cells [1: R3m, a = 8.0738(1), c = 29.086(1)??; 2: P3m1, a = 7.9992(3), c = 14.014(1)??] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low- and two high-spin Mn(II) ions. Each low-spin, octahedral [Mn(II)(CN)(6)](4-) bonds to six high-spin tetrahedral Mn(II) ions through the N?atoms, and each of the tetrahedral Mn(II) ions are bound to three low-spin octahedral [Mn(II)(CN)(6)](4-) moieties. For 2, the fourth cyanide on the tetrahedral Mn(II) site is C?bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral Mn(II) centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01?? (c?axis) for 2, and 9.70?? (c/3) for 1. The [NEt(4)](+) cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low-spin (S = 1/2) octahedral Mn(II) site and two high-spin (S = 5/2) tetrahedral Mn(II) sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1)?K with a coercive field and remanent magnetization of 1140?Oe and 22,800?emuOe?mol(-1), respectively, and the magnetization approaches saturation of 49,800?emuOe?mol(-1) at 90,000?Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2. Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [T(c) = 27?K from d(χT)/dT].  相似文献   

19.
Site-selective carboxylate abstraction has been achieved from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] complexes by treatment with HNO(3) in MeCN. The reaction of the R = Ph or CH(2)Bu(t)() complexes with 4 equiv of HNO(3) gives [Mn(12)O(12)(NO(3))(4)(O(2)CR)(12)(H(2)O)(4)] (R = CH(2)Bu(t) (6) or Ph (7)) in analytical purity. Complex 6.MeNO(2) crystallizes in monoclinic space group C2/c with the following cell parameters at -168 degrees C: a = 21.280(5), b = 34.430(8), c = 33.023(8) A, beta = 104.61(1) degrees, V = 23413 A, and Z = 8. The four NO(3)(-) groups are not disordered and are bound in bridging modes at axial positions formerly occupied by bridging carboxylate groups. (1)H NMR spectroscopy in CD(2)Cl(2) and CDCl(3) shows retention of the solid-state structure on dissolution in these solvents. DC magnetic susceptibility (chi(M)) and magnetization (M) studies have been carried out in the 2.00-300 K and 1.0-7.0 T ranges. Fits of M/Nmu(B) versus H/T plots gave S = 10, g = 1.92, and D = -0.40 cm(-1), where D is the axial zero-field splitting parameter. AC magnetic susceptibility studies on 6 have been performed in the 1.70-10.0 K range in a 3.5 Oe field oscillating at frequencies up to 1500 Hz. Out-of-phase magnetic susceptibility (chi(M)' ') signals were observed in the 4.00-8.00 K range which were frequency-dependent. Thus, 6 displays the slow magnetization relaxation diagnostic of a single-molecule magnet (SMM). The data were fit to the Arrhenius law, and this gave the effective barrier to relaxation (U(eff)) of 50.0 cm(-1) (72.0 K) and a pre-exponential (1/tau(0)) of 1.9 x 10(8) s(-1). Complex 6 also shows hysteresis in magnetization versus DC field scans, and the hysteresis loops show steps at regular intervals of magnetic field, the diagnostic evidence of field-tuned quantum tunneling of magnetization. High-frequency EPR (HFEPR) spectroscopy on oriented crystals of complex 6 shows resonances assigned to transitions between zero-field split M(s) states of the S = 10 ground state. Fitting of the data gave S = 10, g = 1.99, D = -0.46 cm(-1), and B(4)(0) = -2.0 x 10(-5), where B(4)(0) is the quartic zero-field coefficient. The combined results demonstrate that replacement of four carboxylate groups with NO(3)(-) groups leads to insignificant perturbation of the magnetic properties of the Mn(12) complex. Complex 6 should now be a useful starting point for further reactivity studies, taking advantage of the good leaving group properties of the NO(3)(-) ligands.  相似文献   

20.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号