首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.  相似文献   

2.
Electrospray ionization in combination with tandem mass spectrometric techniques has been employed to study the formation of oxomanganese-salen complexes upon oxidation of [Mn(III)(salen)]+ cations as well as the properties and reactions of the oxidized species in the gas phase. Two species could be characterized as the principal oxidation products: the oxomanganese(v) complex, [Mn=O(salen)]+, which is the actual oxygen-transfer agent in epoxidation reactions, and the dinuclear, mu-oxo bridged [L(salen)Mn-O-Mn(salen)L]2+ with two terminal ligands L; the latter acts as a reservoir species. The effects of various substituents in the 5- and 5'-positions, respectively, of the salen ligand on the reactivity of the epoxidation catalyst were determined quantitatively from CID (collision-induced dissociation) experiments and B3LYP density functional calculations. Accordingly, the effect of axial donor ligands on the reactivity of the epoxidation catalyst was studied. Electron-withdrawing substitutents on the salen ligand and additional axial ligands decrease the stability and thus enhance the reactivity of the Mn=O moiety, while electron-donating salen substituents have a strong stabilizing effect.  相似文献   

3.
Olefin epoxidations are a class of reactions appropriate for the investigation of oxygenation processes in general. Here, we report the catalytic epoxidation of various olefins with a novel, cross-bridged cyclam manganese complex, Mn(Me2EBC)Cl2 (Me2EBC is 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), using hydrogen peroxide as the terminal oxidant, in acetone/water (ratio 4:1) as the solvent medium. Catalytic epoxidation studies with this system have disclosed reactions that proceed by a nonradical pathway other than the expected oxygen-rebound mechanism that is characteristic of high-valent, late-transition-metal catalysts. Direct treatment of olefins with freshly synthesized [Mn(IV)(Me2EBC)(OH)2](PF6)2 (pKa = 6.86) in either neutral or basic solution confirms earlier observations that neither the oxo-Mn(IV) nor oxo-Mn(V) species is responsible for olefin epoxidization in this case. Catalytic epoxidation experiments using the 18O labels in an acetone/water (H2(18)O) solvent demonstrate that no 18O from water (H2(18)O) is incorporated into epoxide products even though oxygen exchange was observed between the Mn(IV) species and H2(18)O, which leads to the conclusion that oxygen transfer does not proceed by the well-known oxygen-rebound mechanism. Experiments using labeled dioxygen, (18)O2, and hydrogen peroxide, H2(18)O2, confirm that an oxygen atom is transferred directly from the H2(18)O2 oxidant to the olefin substrate in the predominant pathway. The hydrogen peroxide adduct of this high-oxidation-state manganese complex, Mn(IV)(Me2EBC)(O)(OOH)+, was detected by mass spectra in aqueous solutions prepared from Mn(II)(Me2EBC)Cl2 and excess hydrogen peroxide. A Lewis acid pathway, in which oxygen is transferred to the olefin from that adduct, Mn(IV)(Me2EBC)(O)(OOH)+, is proposed for epoxidation reactions mediated by this novel, non-heme manganese complex. A minor radical pathway is also apparent in these systems.  相似文献   

4.
cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.  相似文献   

5.
Nam W  Jin SW  Lim MH  Ryu JY  Kim C 《Inorganic chemistry》2002,41(14):3647-3652
We have studied an anionic ligand effect in iron porphyrin complex-catalyzed competitive epoxidations of cis- and trans-stilbenes by various terminal oxidants and found that the ratios of cis- to trans-stilbene oxide products formed in competitive epoxidations were markedly dependent on the ligating nature of the anionic ligands. The ratios of cis- to trans-stilbene oxides obtained in the reactions of Fe(TPP)X (TPP = meso-tetraphenylporphinato dianion and X(-) = anionic ligand) and iodosylbenzene (PhIO) were 14 and 0.9 when the X(-) of Fe(TPP)X was Cl(-) and CF(3)SO(3)(-), respectively. An anionic ligand effect was also observed in the reactions of an electron-deficient iron(III) porphyrin complex containing a number of different anionic ligands, Fe(TPFPP)X [TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion and X(-) = anionic ligand], and various terminal oxidants such as PhIO, m-chloroperoxybenzoic acid (m-CPBA), tetrabutylammonium oxone (TBAO), and H(2)O(2). While high ratios of cis- to trans-stilbene oxides were obtained in the reactions of iron porphyrin catalysts containing ligating anionic ligands such as Cl(-) and OAc(-), the ratios of cis- to trans-stilbene oxide were low in the reactions of iron porphyrin complexes containing nonligating or weakly ligating anionic ligands such as SbF(6)(-), CF(3)SO(3)(-), and ClO(4)(-). When the anionic ligand was NO(3)(-), the product ratios were found to depend on terminal oxidants and olefin concentrations. We suggest that the dependence of the product ratios on the anionic ligands of iron(III) porphyrin catalysts is due to the involvement of different reactive species in olefin epoxidation reactions. That is, high-valent iron(IV) oxo porphyrin cation radicals are generated as a reactive species in the reactions of iron porphyrin catalysts containing nonligating or weakly ligating anionic ligands such as SbF(6)(-), CF(3)SO(3)(-), and ClO(4)(-), whereas oxidant-iron(III) porphyrin complexes are the reactive intermediates in the reactions of iron porphyrin catalysts containing ligating anionic ligands such as Cl(-) and OAc(-).  相似文献   

6.
Intermediates of chromium-salen catalyzed alkene epoxidations were studied in situ by EPR, (1)H and (2)H NMR, and UV-vis/NIR spectroscopy (where chromium-salens were (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (1) and racemic N,N'-bis(3,4,5,6-tetra-deuterosalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (2)). High-valence chromium complexes, intermediates of epoxidation reactions, were detected and characterized by EPR and NMR. They are the reactive mononuclear oxochromium(V) intermediate (A) Cr(V)O(salen)L (where L = Cl(-) or a solvent molecule) and an inactive chromium-salen binuclear complex (B) which acts as a reservoir of the active species. The latter complex demonstrates an EPR signal characteristic of oxochromium(V)-salen species and (1)H NMR spectra typical for chromium(III)-salen complexes, and it is identified as mixed-valence binuclear L(1)(salen)Cr(III)OCr(V)(salen)L(2) (L(1), L(2) = Cl(-) or solvent molecules). The intermediates Cr(V)O(salen)L and L(1)(salen)Cr(III)OCr(V)(salen)L(2) exist in equilibrium, and their ratio can be affected by addition of donor ligands (DMSO, DMF, H(2)O, pyridine). Addition of donor additives increases the fraction of A over that of B. The same two complexes can be obtained with m-CPBA as oxidant. Reactivities of the Cr(V)O(salen)L complexes toward E-beta-methylstyrene were measured in DMF. The L(1)(salen)Cr(III)OCr(V)(salen)L(2) intermediate has been proposed to be a reservoir of the true reactive chromium(V) species. The chromium-salen catalysts demonstrate low turnover numbers (ca. 5), probably due to ligand degradation processes.  相似文献   

7.
Two new Fe(III)(salen) complexes, FeL1ClO4·2H2O (1) and FeL2ClO4 (2) [L1 = N,N′-ethylenebis(3-formyl-5-methylsalicylaldimine) and L2 = N,N′-cyclohexenebis(3-formyl-5-methylsalicylaldimine)], have been synthesized and characterized. The catalytic activity of the complexes for epoxidation of alkenes has been investigated in the presence of two terminal oxidants PhIO and NaOCl, with two solvents CH3CN and CH2Cl2. As alkenes styrene and (E)-stilbene have been chosen for investigation; styrene is a better substrate than electron-rich (E)-stilbene. The study also suggests that unlike their Mn(III) counterparts, 1 and 2 are poor epoxidation catalysts; catalysis proceeds with formation of one intermediate, rather than forming more than one intermediate depending on the terminal oxidant used. Use of exogenous neutral donor ligands such as Py, PyNO and 1-MePy is effective to improve catalytic behavior.  相似文献   

8.
Catalytic properties of a series of iron(III)-salen (salen=N,N'-bis(salicylidene)ethylenediamine dianion) and related complexes in asymmetric sulfoxidation reactions, with iodosylarenes as terminal oxidants, have been explored. These catalysts have been found to efficiently catalyze oxidation of alkyl aryl sulfides to sulfoxides with high chemoselectivity (up to 100 %) and moderate-to-high enantioselectivity (up to 84 % with isopropylthiobenzene and iodosylmesitylene), the TON (TON=turnover number) approaching 500. The influence of the ligand (electronic and steric effects of the substituents), oxidant, and substrate structures on the oxidation stereoselectivity has been investigated systematically. The structure of the reactive intermediates (complexes of the type [Fe(III)(ArIO)(salen)] and the reaction mechanism have been revealed by both mechanistic studies with different iodosylarenes and direct in situ (1)H NMR observation of the formation of the reactive species and its reaction with the substrate.  相似文献   

9.
New nickel catalysts have been developed for the oxidation of alkenes to epoxides, alcohols, aldehydes and ketones. Mechanistic studies indicate that the oxidation reactions are very sensitive to the nature of the catalyst; only certain ligands including salen and the macrocycles cyclam and dioxocyclam render Ni(II) effective as a catalyst. A Ni(III) or Ni(IV)-oxo species has been postulated as the catalytically active oxidant which leads to oxygen atom transfer to alkenes in a stepwise process. Both iodosylbenzene and hypochlorite have been used as terminal oxidants; both systems give high yields of epoxidation of alkenes and varying amounts of C=C bond cleavage products. In order to reach an ultimate goal of hydrocarbon oxidation within a molecular recognition system, new molecular receptors for organic substrates have been investigated. The receptors are constructed from two subunits of cholic acid and display amphophilic character — a hydrophobic exterior and a hydrophilic interior. Conformational properties in the presence of polar guests in CDCl3 are described.  相似文献   

10.
Reaction of [MoO(2)(η(2)-tBu(2)pz)(2)] with Schiff base ligands HL(X) (X = 1-5) gave molybdenum(VI) dioxo complexes of the type cis-[MoO(2)(L(X))(2)] as yellow to light brown solids in moderate to good yields. All ligands coordinate via its phenolic O atom and the imine N atom in a bidentate manner to the metal center. The third donor atom (R(2) = OMe or NMe(2)) in the side chain in complexes 1-4 is not involved in coordination and remains pendant. This was confirmed by X-ray diffraction analyses of complexes 1 and 3. Complexes 1, 3, and 5 exist as a mixture of two isomers in solution, whereas complexes 2 and 4 with sterically less demanding substituents on the aromatics only show one isomer in solution. All complexes are active catalysts in the epoxidation of various internal and terminal alkenes, and epoxides in moderate to good yields with high selectivities are obtained. In the challenging epoxidation of styrene, complexes 1 and 2 prove to be very active and selective. The selectivity seems to be influenced by the pendant donor arm, as complex 5 without additional donor in the side chain is less selective. Experiments prove that the addition of n-butyl methyl ether as intermolecular donor per se has no influence on the selectivity. The basic conditions induced by the NMe(2) groups in complexes 3 and 4 lead to lower activity.  相似文献   

11.
The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.  相似文献   

12.
Metal-superoxo species are believed to play key roles in oxygenation reactions by metalloenzymes. One example is cysteine dioxygenase (CDO) that catalyzes the oxidation of cysteine with O(2), and an iron(III)-superoxo species is proposed as an intermediate that effects the sulfoxidation reaction. We now report the first biomimetic example showing that a chromium(III)-superoxo complex bearing a macrocyclic TMC ligand, [Cr(III)(O(2))(TMC)(Cl)](+), is an active oxidant in oxygen atom transfer (OAT) reactions, such as the oxidation of phosphine and sulfides. The electrophilic character of the Cr(III)-superoxo complex is demonstrated unambiguously in the sulfoxidation of para-substituted thioanisoles. A Cr(IV)-oxo complex, [Cr(IV)(O)(TMC)(Cl)](+), formed in the OAT reactions by the chromium(III)-superoxo complex, is characterized by X-ray crystallography and various spectroscopic methods. The present results support the proposed oxidant and mechanism in CDO, such as an iron(III)-superoxo species is an active oxidant that attacks the sulfur atom of the cysteine ligand by the terminal oxygen atom of the superoxo group, followed by the formation of a sulfoxide and an iron(IV)-oxo species via an O-O bond cleavage.  相似文献   

13.
The synthesis of the components of the dynamic supramolecular hydrogen-bonded catalytic system 2 + 3 is described. The catalytic performance and substrate- and enantioselectivity of Mn(salen) catalyst 2 were investigated in the presence and absence of the Zn(porphyrin) receptor unit 3. The effects of pyridine and pyridine N-oxide donor ligands were also studied. Some aspects on the mechanism of the Jacobsen-Katsuki epoxidation, based on literature observations, are introduced as a means to analyse the behaviour of 2 and its modulation by the formation of macrocycle 1 with 3. A complete association model of the metal-free system 4 + 5 refutes the earlier assumption that macrocycle 1 is the predominant form of catalyst 2 under the standard epoxidation reaction conditions with 2 + 3. Evidence are provided that receptor-binding substrates and nonbinding substrates, respectively, are epoxidised by two different catalytic species, or two distinct distributions of species in competitive epoxidations using catalytic system 2 + 3. The two species are assigned to the endo and exo faces of the Mn(salen) catalyst in macrocycle 1, and to equivalently folded oligomeric structures with monomers 2 and 3 in adjacent positions.  相似文献   

14.
Olefin epoxidation provides an operative protocol to investigate the oxygen transfer process in nature. A novel manganese complex with a cross-bridged cyclam ligand, MnIV(Me2EBC)(OH)2(2+) (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), was used to study the epoxidation mechanism with biologically important oxidants, alkyl hydroperoxides. Results from direct reaction of the freshly synthesized manganese(IV) complex, [Mn(Me2EBC)(OH)2](PF6)2, with various olefins in neutral or basic solution, and from catalytic epoxidation with oxygen-labeled solvent, H2 18O, eliminate the manganese oxo moiety, Mn(IV)=O, as the reactive intermediate and obviate an oxygen rebound mechanism. Epoxidations of norbornylene under different conditions indicate multiple mechanisms for epoxidation, and cis-stilbene epoxidation under atmospheric 18O2 reveals a product distribution indicating at least two distinctive intermediates serving as the reactive species for epoxidation. In addition to alkyl peroxide radicals as dominant intermediates, an alkyl hydroperoxide adduct of high oxidation state manganese(IV) is suggested as the third kind of active intermediate responsible for epoxidation. This third intermediate functions by the Lewis acid pathway, a process best known for hydrogen peroxide adducts. Furthermore, the tert-butyl peroxide adduct of this manganese(IV) complex was detected by mass spectroscopy under catalytic oxidation conditions.  相似文献   

15.
A series of trinuclear manganese complexes coordinated with neutral bidentate nitrogen ligands, [Mn3L2(OAc)6], were prepared from manganese acetate and the corresponding ligands. Using peracetic acid as the oxidant, the air- and moisture-stable manganese clusters exhibited excellent catalytic activity and selectivity in the epoxidation of olefins under mild conditions. The highest activity was observed with a trinuclear complex containing a 2-pyridylimino ligand, [Mn3(ppei)2(OAc)6] (ppei = 2-pyridinal-1-phenylethylimine). With this system, the substrate scope was extremely wide to include terminal and electron-deficient double bonds of both aliphatic and aromatic alkenes. The high activity was undiminished under the reaction conditions even directly using a mixture of the pyridylimino ligands and manganese acetates, making this process more convenient. It was also observed that analogous trinuclear complexes, such as [Mn3(bipy)2(OAc)6] and [Mn3(phen)2(OAc)6], displayed excellent activities. While radical intermediacy was inferred from the product distribution, kinetic data revealed that the epoxidation is roughly first-order in manganese cluster precursor and oxidant, respectively, and zero-order in olefin. These results led us to propose that the trinuclear complexes [Mn3L2(OAc)6] serve as catalyst precursors that dissociate into monomeric species with the formulation of [MnL2(OAc)2] under the reaction conditions.  相似文献   

16.
A novel mixed-ligand [RuIII(amp)(pic)(H2O)] complex (1) (H2amp = N-(hydroxyphenyl)salicyldimine; pic = picolinate) has been synthesized and characterized by physico-chemical methods. Complex 1has been found to be an effective catalyst in oxo-functionalization of C-H bond of organic substrates by using tert-butyl hydroperoxide (t-BuOOH) as a terminal oxidant. Formation of a high valent Ru(V)-oxo species as catalytic intermediate is proposed to be the source of oxygen atom in the oxidised product.  相似文献   

17.
The catalytic activity of Mn(salen)Cl containing tert-pentyl groups at the 3,5-positions of the salen ligand in the epoxidation of alkenes and hydroxylation of alkanes was studied at room temperature, using sodium periodate as an oxygen source. The effects of various axial ligands were investigated in the epoxidation of cyclooctene. Imidazole, as a strong π-donor ligand, was the best axial ligand. The effect of different solvents was studied in the epoxidation of cyclooctene in CH3CN/H2O solvent mixture. The epoxidation reactions of cyclooctene by different oxygen donors including NaIO4, Bu4NIO4, KHSO5, H2O2, H2O2/urea, NaOCl and tert-BuOOH were also studied and NaIO4 was selected as oxygen source. The presence of bulky substituents in the 3,5-positions of the salen ligand was found to increase the catalytic activity of this complex.  相似文献   

18.
A new microporous metal-organic framework compound featuring chiral (salen)Mn struts is highly effective as an asymmetric catalyst for olefin epoxidation, yielding enantiomeric excesses that rival those of the free molecular analogue. Framework confinement of the manganese salen entity enhances catalyst stability, imparts substrate size selectivity, and permits catalyst separation and reuse.  相似文献   

19.
Lü Z  Yuan M  Pan F  Gao S  Zhang D  Zhu D 《Inorganic chemistry》2006,45(9):3538-3548
Tetradentate Schiff base ligands H2L (H2saltmen, H2salen, H2-5-Brsalen, and H2-3,5-Brsalen), derived from the condensation of the corresponding salicylaldehyde or its derivatives with 1,1,2,2-tetramethylethyldiamine or 1, 2-diaminoethane, reacted with Mn(III) acetate or perchlorate salts and sodium azide or sodium cyanate to produce five Mn(III) dimer complexes, [Mn(saltmen)(O2CCH3)]2.2CH3CO2H (1), [Mn(saltmen)(N3)]2 (2), [Mn(salen)(NCO)]2 (3), [Mn(3,5-Brsalen)(3,5-Brsalicylaldehyde)]2 (4), and [Mn(5-Brsalen)(CH3OH)]2(ClO4)2 (5). These new complexes have been characterized by IR, elemental analyses, crystal structural analyses, and magnetic studies. Within these Mn(III) dimeric complexes, two Mn(III) ions are connected by phenolate oxygen atoms with acetate, azide, cyanate, a 3,5-Brsalicyladehyde anion, and a neutral methanol molecule as the axial ligands for complexes 1-5, respectively. Complexes 1-4 exhibit intradimer ferromagnetic exchange and display frequency dependence of ac magnetic susceptibility, possibly showing single-molecule-magnet (SMM) behavior. In contrast, complex 5 shows an intradimer antiferromagnetic coupling probably originating from the relatively shorter Mn-O distance, compared to those of complexes 1-4.  相似文献   

20.
Electronic effects in (salen)Mn-based epoxidation catalysts   总被引:2,自引:0,他引:2  
Presented are density functional calculations on various Mn(salen) systems that are active catalysts in the epoxidation of olefins. Correlation of various structural properties such as Mn=O bond strengths, atomic charges, and C-O distances of evolving bonds in transition state geometries with modified Hammett constants reveal a mechanistic picture of the epoxidation reaction, supporting previous experimental results. Enantioselectivity is tied to the position of a transition state along the reaction coordinate for the first C-O bond formation step, when an olefin is approaching the epoxidation catalyst. Electronic effects exhibited by the 5,5' substituents of the salen ligand manifest themselves in a tuning of the Mn=O bond strength, which in turn influences the C-O distance of the forming bond in the transition state geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号