共查询到20条相似文献,搜索用时 0 毫秒
1.
3.
An edge-coloring of a graph G with colors 1,2,…,t is called an interval (t,1)-coloring if at least one edge of G is colored by i, i=1,2,…,t, and the colors of edges incident to each vertex of G are distinct and form an interval of integers with no more than one gap. In this paper we investigate some properties of interval (t,1)-colorings. We also determine exact values of the least and the greatest possible number of colors in such colorings for some families of graphs. 相似文献
4.
5.
6.
The Padmakar–Ivan index of a graph G is the sum over all edges uv of G of number of edges which are not equidistant from u and v. In this work, an exact expression for the PI index of the Cartesian product of bipartite graphs is computed. Using this formula, the PI indices of C4 nanotubes and nanotori are computed. 相似文献
7.
The smallest number of edges that have to be deleted from a graph to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper we determine the bipartite edge frustration of some classes of composite graphs. 相似文献
8.
Let G be an undirected graph that is neither a path nor a cycle. Clark and Wormald [L.H. Clark, N.C. Wormald, Hamiltonian-like indices of graphs, ARS Combinatoria 15 (1983) 131-148] defined hc(G) to be the least integer m such that the iterated line graph Lm(G) is Hamilton-connected. Let be the diameter of G and k be the length of a longest path whose internal vertices, if any, have degree 2 in G. In this paper, we show that . We also show that κ3(G)≤hc(G)≤κ3(G)+2 where κ3(G) is the least integer m such that Lm(G) is 3-connected. Finally we prove that hc(G)≤|V(G)|−Δ(G)+1. These bounds are all sharp. 相似文献
9.
The energy of a graph is the sum of the absolute values of the eigenvalues of the graph. In a paper [G. Caporossi, D. Cvetkovi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996] Caporossi et al. conjectured that among all connected graphs G with n≥6 vertices and n−1≤m≤2(n−2) edges, the graphs with minimum energy are the star Sn with m−n+1 additional edges all connected to the same vertices for m≤n+⌊(n−7)/2⌋, and the bipartite graph with two vertices on one side, one of which is connected to all vertices on the other side, otherwise. The conjecture is proved to be true for m=n−1,2(n−2) in the same paper by Caporossi et al. themselves, and for m=n by Hou in [Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163-168]. In this paper, we give a complete solution for the second part of the conjecture on bipartite graphs. Moreover, we determine the graph with the second-minimal energy in all connected bipartite graphs with n vertices and edges. 相似文献
10.
11.
12.
C. Balbuena 《Discrete Mathematics》2007,307(2):155-162
Girth pairs were introduced by Harary and Kovács [Regular graphs with given girth pair, J. Graph Theory 7 (1983) 209-218]. The odd girth (even girth) of a graph is the length of a shortest odd (even) cycle. Let g denote the smaller of the odd and even girths, and let h denote the larger. Then (g,h) is called the girth pair of the graph. In this paper we prove that a graph with girth pair (g,h) such that g is odd and h?g+3 is even has high (vertex-)connectivity if its diameter is at most h-3. The edge version of all results is also studied. 相似文献
13.
14.
15.
Let be a simple bipartite graph with . We prove that if the minimum degree of satisfies , then is bipanconnected: for every pair of vertices , and for every appropriate integer , there is an -path of length in . 相似文献
16.
The nullity of a graph is defined to be the multiplicity of the eigenvalue zero in the spectrum of the adjacency matrix of the graph. In this paper, we obtain the nullity set of bipartite graphs of order n, and characterize the bipartite graphs with nullity n-4 and the regular bipartite graphs with nullity n-6. 相似文献
17.
18.
Saieed Akbari Hadi Alizadeh Tınaz Ekim Didem Gözüpek Mordechai Shalom 《Discrete Mathematics》2018,341(10):2859-2871
A graph is equimatchable if all of its maximal matchings have the same size. A graph is claw-free if it does not have a claw as an induced subgraph. In this paper, we provide the first characterization of claw-free equimatchable graphs by identifying the equimatchable claw-free graph families. This characterization implies an efficient recognition algorithm. 相似文献
19.
20.
A graph is superconnected, for short super-κ, if all minimum vertex-cuts consist of the vertices adjacent with one vertex. In this paper we prove for any r-regular graph of diameter D and odd girth g that if D≤g−2, then the graph is super-κ when g≥5 and a complete graph otherwise. 相似文献