首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The exact solution for the electromagnetic field occuring when the Kerr–Taub–NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr–Taub–NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.  相似文献   

2.
Evolution of the magnetic field of a neutron star (pulsar) under the influence of the superconductivity of a proton plasma in the stellar core is considered. The magnetic field expulsion from the core due to the Meissner effect for the second-type npe-superconductor is shown to be inefficient for the magnetic fields B 0<1014 G. Therefore, neglecting other expulsion mechanisms (e.g., related to the buoyancy of the Abrikosov vortices or their pinning to the Onsager-Feynman vortices in the superfluid interior of the rotating star), such magnetic fields should be frozen into the core for>1010 years, i.e., during the entire lifetime of the star.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 1, pp. 26–33, January, 1996.In conclusion, authors wish to thank V. V. Kurin, Yu. V. Petukhov, D. A. Ryndyk, and V. Yu. Trakhtengerts for discussion of the problems of vortex dynamics and magnetic field evolution on neutron stars.  相似文献   

3.
In 1992 M.W. Evans proposed the O(3) symmetry of electromagnetic fields by adding a constant longitudinal magnetic field to the well-known transverse electric and magnetic fields of circularly polarized plane waves, such that certain cyclic relations of a so-called O(3) symmetry are fulfilled. Since then M.W. Evans has elevated this O(3) symmetry to the status of a new law of electromagnetics. As a law of physics must be invariant under admissible coordinate transforms, namely Lorentz transforms, in 2000 he published a proof of the Lorentz invariance of O(3) symmetry of electromagnetic fields. As will be shown below this proof is incorrect; more, after simple correction it will turn out here that the O(3) symmetry cannot be Lorentz invariant.  相似文献   

4.
Dipolar soft-sphere (DSS) fluids in the dilute low-coupling regime are studied via Molecular Dynamic simulations and the extension of a theoretical formalism previously used for dipolar hard spheres in which new terms for the virial expansion of the radial distribution function corresponding to the three-particle contribution are presented and tested for the zero and non-zero magnetic field case. A thorough comparison with simulations shows that the extended formalism is able to account for the structure factors of DSS with and without externally applied magnetic fields in the dilute low-coupling regime: quantitative agreement between theory and simulations is found for dipolar coupling parameters λ?2, and volume fraction φ?0.25. When λ>1 the new added term to the virial expansion is observed to play a crucial role in order to match quantitatively theory and simulations at zero field. In the presence of an external magnetic field our tests show that further improvements are needed and only new terms with Langevin function dependences can significatively contribute to improve the predictions for the dilute low-coupling regime. Numerical simulations show that despite that the ferrofluids considered here are in the dilute low-coupling regime, when an external field is applied, important correlations along the parallel direction to the field and depletion phenomena along the perpendicular direction are observed in the averaged density surrounding a particle.  相似文献   

5.
The idea of the magnetorotational explosion mechanism is that the energy of rotation of the neutron star formed in the course of a collapse is transformed into the energy of an expanding shock wave by means of a magnetic field. In the two-dimensional case, the time of this transformation depends weakly on the initial strength of the poloidal magnetic field because of the development of a magnetorotational instability. Differential rotation leads to the twisting and growth of the toroidal magnetic-field component, which becomes much stronger than the poloidal component. As a result, the development of the instability and an exponential growth of all field components occur. The explosion topology depends on the structure of the magnetic field. In the case where the initial configuration of the magnetic field is close to a dipole configuration, the ejection of matter has a jet character, whereas, in the case of a quadrupole configuration, there arises an equatorial ejection. In either case, the energy release is sufficient for explaining the observed average energy of supernova explosion. Neutrinos are emitted as the collapse and the formation of a rapidly rotating neutron star proceeds. In addition, neutrino radiation arises in the process of magnetorotational explosion owing to additional rotational-energy losses. If the mass of a newborn neutron star exceeds the mass limit for a nonrotating neutron star, then subsequent gradual energy losses may later lead to the formation of a black hole. In that case, the energy carried away by a repeated flash of neutrino radiation increases substantially. In order to explain an interval of 4.5 hours between the two observed neutrino signals from SN 1987A, it is necessary to assume a weakening of the magnetorotional instability and a small initial magnetic field (109?1010 G) in the newly formed rotating neutron star. The existence of a black hole in the SN 1987A remnant could explain the absence of any visible pointlike source at the center of the explosion.  相似文献   

6.
王兆军  吕国梁  朱春花  霍文生 《物理学报》2012,61(17):179701-179701
中子星内部的致密电子是高度简并的相对论气体, 其输运性质与中子星磁或热的观测现象密切相关, 被认为是中子星磁场的主要载体. 外磁场中电子的朗道能级是分立的且高度简并的, 与无外场时的能量差决定 了系统的磁化程度, 用量子统计的方法可计算理想相对论电子气体的磁化率. 结果表明弱场条件下的磁化率在数量级上接近白矮星的10-3. 强磁场下的磁化呈现出类似在某些低温金属中出现的de Haas-van Alphen 震荡效应, 高次谐频的震荡幅度有可能超出临界磁化时的磁化率. 表明中子星内部有可能存在非稳定的磁化过程, 发生类似气液转化的一级相变过程, 出现两种磁化共存的稳定态或过冷磁化的亚稳态(若不同磁化态间存在表面能). 从亚稳态向稳定态的突然转化可能与磁星的辐射有关, 可以解释在磁星巨闪过程中观测到的额外辐射问题.  相似文献   

7.
μ+ SR-measurements in transversally applied magnetic fields of 2000 G and 4000 G on heavy-electron single crystal U2Zn17 are presented. They reveal that at least two types of interstitial sites are occupied by the positive muons. One of these sites (1/3, 2/3, 5/6) could be identified via induced local dipolar fields which aboveT N=9.7 K can exactly be derived from the magnetic susceptibility. The corresponding component of the μ+-signal exhibits a steplike decrease by about 40% atT N which is caused by the onset of a very broad distribution of static internal magnetic fields (ΔB≈1000 G) with zero average. Such a field distribution is in distinct contrast to dipolar-field calculations performed for the simple antiferromagnetic structure deduced from neutron diffraction. The remaining 60% of the muons contributing to this component belowT N are subject to a narrow static field distribution (ΔB≈1 G). The induced dipolar fields at the site (1/3, 2/3, 5/6) are temperature-independent belowT N. A weak dipolar coupling to the U-moments renders similar observations for muons occupying the second type of interstitial impossible.  相似文献   

8.
The general relativistic frame dragging effect on the properties, such as the moments of inertia and the radii of gyration of fast rotating neutron stars with a uniform strong magnetic field, is calculated accurate to the first order in the uniform angular velocity. The results show that compared with the corresponding non-rotating static spherical symmetric neutron star with a weaker magnetic field, a fast rotating neutron star (millisecond pulsar) with a stronger magnetic field has a relative smaller moment of inertia and radius of gyration.  相似文献   

9.
Paper I analyzed the evolution of nonspherical scalar-field perturbations of an electrically charged, collapsing star; this paper treats coupled electromagnetic and gravitational perturbations. It employs the results of recent detailed work in which coupled perturbations were studied in a gauge-invariant manner by using the Hamiltonian (Moncrief s) approach and the Newman-Penrose formalism, and the relations between the fundamental quantities of these two methods were obtained.It is shown that scalar-field perturbations are a prototype for coupled perturbations. The collapse produces a Reissner-Nordström black hole, and the perturbations are radiated away completely. Alll-pole parts of the perturbations of the metric and the electromagnetic field decay according to power laws; in the extreme case (e 2 =M 2), the interaction causes the quadrupole perturbations to die out more slowly than the dipole perturbations.  相似文献   

10.
A uniform strong magnetic field is considered in calculating the properties of neutron star rotating at the Kepler frequency. The results show that the effect of the magnetic field on the properties of neutron star is evident, and the properties of the neutron stars rotating at the Kepler frequency can be used as a criterion to the equations of states of the neutron star matters.  相似文献   

11.
The equations of state for neutron matter, strange and non-strange hadronic matter in the chiral SU(3) quark mean-field model are applied in the study of slowly rotating neutron stars and hadronic stars. The radius, mass, moment of inertia, and other physical quantities are carefully examined. The effect of the nucleon crust for the strange hadronic star is exhibited. Our results show that the rotation can increase the maximum mass of compact stars significantly. For a big enough mass of pulsars which cannot be explained as strange hadronic stars, theoretical approaches to increase the maximum mass are addressed.  相似文献   

12.
Spin-flavor oscillations of neutrinos in rapidly varying external fields are studied. A method for describing neutrino oscillations in arbitrary rapidly varying external fields is developed. An effective Hamiltonian that describes the evolution of the averaged neutrino wave function is obtained. Neutrino oscillations in rapidly varying magnetic fields are considered on the basis of the general formalism developed in this study. Neutrino transitions in a superposition of a constant and a rotating (in space) magnetic field that are transverse with respect to the neutrino velocity are studied. The probabilities of transitions in spin-flavor oscillations of neutrinos in the magnetic fields of the Sun are estimated. Numerical solutions to the Schrödinger equation for the Hamiltonian that describes neutrino interaction with a constant and a rotating (in space) magnetic field are given. It is shown that the approximate analytic formula obtained in the present study for the probability of neutrino transitions is consistent with the respective numerical solution to the evolution equation at high frequencies of the rotating magnetic fields.  相似文献   

13.
Spin dynamics in an easy plane magnetic chain has been studied in terms of polaritons and solitons, when the coupling between magnons and their induced dipolar electromagnetic field is included. For a moderate external magnetic field in the easy plane, non-topoligical, classical ø4 solitons can describe the dynamics of spins dressed with the electromagnetic field. The solitary wave thus produced propagates at phase velocities bounded by the two limiting phase velocities of the polariton dispersion relations.  相似文献   

14.
The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 1028. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).  相似文献   

15.
The muon is a useful probe of magnetic fields in superconductors, but knowing the field seen by the muon is often of limited value until we know where the muon is in the crystal lattice. Here we employ two independent theoretical methods to search for candidate muon sites:the potential energy field method, which seeks the minimum of the electrostatic potential of theμ +, and themagnetic dipolar field method, which compares the calculated magnetic field (due to host electronic or nuclear dipolar fields) with the observed local fields at the muon. Work supported by Canadian NRC and NSERC.  相似文献   

16.
The Fermi energy, partial concentrations of polarized neutrons, pressure, and volume energy density of a degenerate nonrelativistic neutron gas in a magnetic field are calculated using numerical methods taking into account the anomalous magnetic moment of a neutron. The results of calculations are a generalization of relations underlying the Oppenheimer-Volkov model of a neutron star to the case of an applied magnetic field. An ultrastrong (up to 1017 G) magnetic field changes the pressure and internal energy of the star and affects it static configuration and evolution. It is shown that a degenerate neutron gas in ultrastrong and weak magnetic fields is paramagnetic; the corresponding values of magnetic susceptibility differ by a factor on the order of unity. The possibility of experimentally verifying the results from analysis of pulsar-emitted radiation is discussed.  相似文献   

17.
By generalizing a model previously proposed, a classical nonrelativistic U(1)×U(1) gauge field model for the electromagnetic interaction of composite particles in (2+1) dimensions is constructed. The model contains a Chern–Simons U(1) field and the electromagnetic U(1) field, and it describes both a composite boson system or a composite fermion one. The second case is considered explicitly. The model includes a topological mass term for the electromagnetic field and interaction terms between the gauge fields. By following the Dirac Hamiltonian formalism for constrained systems, the canonical quantization for the model is realized. By developing the path integral quantization method through the Faddeev–Senjanovic algorithm, the Feynman rules of the model are established and its diagrammatic structure is discussed. The Becchi–Rouet–Stora–Tyutin formalism is applied to the model. The obtained results are compared with the ones corresponding to the previous model.  相似文献   

18.
19.
We study the electrical conductivity in magnetized neutron star cores produced by collisions between charged particles. We take into account the ordinary exchange of longitudinal plasmons and the exchange of transverse plasmons in collisions between particles. The exchange of transverse plasmons is important for collisions between relativistic particles, but it has been disregarded previously when calculating the electrical conductivity. We show that taking this exchange into account changes the electrical conductivity, including its temperature dependence (thus, for example, the temperature dependence of the electrical resistivity along the magnetic field in the low-temperature limit takes the form ?T 5/3 instead of the standard dependence ?T 2 for degenerate Fermi systems). We briefly describe the effect of possible neutron and proton superfluidity in neutron star cores on the electrical conductivity and discuss various scenarios for the evolution of neutron star magnetic fields.  相似文献   

20.
A general method is given for the calculation of the electron distribution function of a weakly ionized plasma in external time-dependent magnetic fields and additional electromagnetic fields. The Boltzmann equation of kinetic theory is solved taking into account elastic collisions between electrons and neutrals. The isotropic part f0 of the distribution function follows from a general linear integro-differential equation and contains all known standard distributions (Druyvesteyn, Davydov, Margenau and others) as special cases. The direction-dependent part f1 gives the transport tensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号