首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface of SBA-15 ordered mesoporous silica was functionalized with sulphonic and amine functional groups to determine the effect of changes in surface acidity on cephalexin adsorption and subsequent release. Cephalexin (CPX), which belongs to the group of cephalosporins or β-lactam antibiotics, was impregnated on functionalized SBA-15. The functionalized silica materials were characterized by SEM, TGA, FTIR and N2 adsorption, and an in vitro drug delivery test was performed. SEM micrographs showed the packed cylinders correspond to SBA 15 materials. Likewise, N2 adsorption–desorption isotherms demonstrated that the SBA-15 structure was obtained when IV-type isotherms were displayed. The inalterable stabilization of the drug was confirmed by FTIR spectroscopy. For all the samples studied, the delivery profiles exhibit two steps. A fast initial stage was obtained over the first 5 h, followed by a slower one. Regarding this second stage, the time needed to attain a plateau was undoubtedly altered by the surface functionalization.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(3):293-301
Dry reforming of methane has been carried out on SBA-15 catalysts containing 5 wt% Ni and 6 wt% Ce. The effect of the order of Ni and Ce impregnation on the catalytic activity has been studied. Both metals were added using the “two-solvent” method that favors metal dispersion inside the pores. Characterizations by XRD (low and high angles), N2 sorption, SEM and TEM of the materials after metal addition and calcination indicate good preservation of the porosities and high NiO and CeO2 dispersion inside the porous channels. Reduction was carried out before the catalytic tests and followed by TPR measurements. The most active reduced catalyst was the Ni–Ce/SBA-15 sample prepared by impregnating cerium first, then nickel. All catalysts were highly active and selective towards H2 and CO at atmospheric pressure. Full CH4 conversion was obtained below 650 °C. The higher performances compared to those reported in the literature for mesoporous silica with supported Ni and Ce catalysts are discussed.  相似文献   

3.
《Comptes Rendus Chimie》2015,18(3):358-367
Fe/SBA-15 catalysts containing iron oxide nanoparticles confined inside silica pores (replicated, internal, poorly crystalline) and grown outside silica grains (external, mainly crystalline hematite) in different proportions are prepared using a single silica support. Fe-species are deposited by the two-solvent technique with two iron salts precursors (Fe(NO3)3·9H2O, FeCl3·6H2O) and two solvents (cyclohexane, hexane) for 11 wt% of iron. Calcination is performed in reproducible conditions (700 °C, 2 °C/min, thin bed, in air). SAXS measurements are used to show that the 2D hexagonal structure of the used silica is maintained after Fe-loading and calcination. Ar sorption measurements show that the pores are partially plugged. The oxidation of pure methanol is used as a test reaction to compare photocatalytic properties. H2O2 and visible light both activate the reaction. More active catalysts are formed with hexane associated with FeCl3·6H2O than with Fe(NO3)3·9H2O. A reversed situation is observed with cyclohexane. Iron leaching (after 1 h 30 of test, up to 3 mg of Fe by mL) is important. These results are expected to be of interest in the exploration of size and shape “nanocatalysis” and to provide a further understanding for the reactions that take place when porous silicas are used as supports.  相似文献   

4.
pH-Controllable drug release using hydrogel encapsulated mesoporous silica   总被引:1,自引:0,他引:1  
Amine-functionalized mesoporous SBA-15 silica loaded with bovine serum albumin (BSA) has been successfully encapsulated with a thin layer coating of poly(acrylic acid) PAA, with the entrapped BSA being released from the PAA-encapsulated SBA-15 at the higher pH value of 7.4 rather than at the lower pH value of 1.2. This novel drug delivery system has a potential application in the release of protein drug to the site of higher pH value, such as small intestine or colon.  相似文献   

5.
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.  相似文献   

6.
The formation of polycrystalline tin oxide nanoparticles (NP) and nanowires was investigated using nanocasting approach included solid-liquid strategy for insertion of SnCl2 precursor and SBA-15 silica as a hard template. HR-TEM and XRD revealed that during the thermal treatment in air 5 nm tin oxide NP with well defined Cassiterite structure were formed inside the SBA-15 matrix mesopores at 250 °C. After air calcination at 700 °C the NP assembled inside the SBA-15 mesopores as polycrystalline nanorods with different orientation of atomic layers in jointed nanocrystals. It was found that the structure silanols of silica matrix play a vital role in creating the tin oxide NP at low temperature. The pure tin chloride heated in air at 250 °C did not react with oxygen to yield tin oxide. Tin oxide NP were also formed during the thermal treatment of the tin chloride loaded SBA-15 in helium atmosphere at 250 °C. Hence, it is well evident that silanols present in the silica matrix not only increase the wetting of tin chloride over the surface of SBA-15 favoring its penetration to the matrix pores, but also react with hydrated tin chloride according to the proposed scheme to give tin oxide inside the mesopores. It was confirmed by XRD, N2-adsorption, TGA-DSC and FTIR spectra. This phenomenon was further corroborated by detecting the inhibition of SnO2 NP formation at 250 °C after inserting the tin precursor to SBA-15 with reduced silanols concentration partially grafted with tin chloride.  相似文献   

7.
Three different porous metal organic framework (MOF) materials have been prepared with and without uncoordinated amine functionalities inside the pores. The materials have been characterized and tested as adsorbents for carbon dioxide. At 298 K the materials adsorb significant amount of carbon dioxide, the amine functionalised adsorbents having the highest CO2 adsorption capacities, the best adsorbing around 14 wt% CO2 at 1.0 atm CO2 pressure. At 25 atm CO2 pressure, up to 60 wt% CO2 can be adsorbed. At high pressures the CO2 uptake is mostly dependent on the available surface area and pore volume of the material in question. For one of the iso-structural MOF pairs the introduction of amine functionality increases the differential adsorption enthalpy (from isosteric method) from 30 to around 50 kJ/mole at low CO2 pressures, while the adsorption enthalpies reach the same level at increase pressures. The high pressure experimental results indicate that MOF based solid adsorbents can have a potential for use in pressure swing adsorption of carbon dioxide at elevated pressures.  相似文献   

8.
《Comptes Rendus Chimie》2014,17(9):913-919
Different cobalt loadings (3, 6, 12, 24 wt%) were impregnated using the double-solvent technique on SBA-15 calcined at 500 °C presenting a high specific surface area. The impregnated solids were stabilized at 450 °C in the air. The impregnation of cobalt led to the incorporation of cobalt oxide nanoparticles in the mesoporosity of the SBA-15. The cobalt nanoparticles were easily reducible compared to similar solids prepared by different methods. The presence of these nanoparticles enhanced significantly the reactivity of the catalysts in the considered reaction. The addition of more than 12 wt% of cobalt did not enhance the catalytic reactivity due to the deposition of cobalt oxide species on the surface of the support. The cobalt-impregnated solids are efficient in decreasing the oxidation temperature of different probe molecules and are totally selective towards the formation of CO2 and H2O.  相似文献   

9.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

10.
Ordered, mesoporous SBA-15 functionalized with organic and inorganic moieties exhibits efficient catalytic activity in a variety of organic transformations. In this account, reviewing our own work, three-sets of surface-modified SBA-15 materials have been investigated. The first-set of materials consists of SBA-15 modified with organo-acidic (propyl thiol and propyl sulfonic acid) and basic (propyl amine and propyl adenine) moieties. The second-set of materials was prepared by grafting Mn complexes to the organo-functionalized SBA-15. The third-set composes of nanocrystalline metal oxides supported on SBA-15. All these catalysts have been characterized by structural and spectroscopic techniques. Catalytic activities of the first-set of solid materials have been investigated in acid/base-catalyzed reactions viz., ring-opening of epoxides with amines (producing β-amino alcohols), esterification, three-component-Mannich reactions and cycloaddition of CO2 to epoxides. The Mn complexes grafted on organofunctionalized SBA-15 are efficient catalysts for the chemo-, regio- and stereoselective aerial oxidation of monoterpenes at ambient conditions. TiOx, VOx, MoOx and WOx supported on SBA-15 catalyzed biomimetic oxyhalogenation of aromatic compounds. In all these reactions, the functionalized SBA-15 showed high selectivity.  相似文献   

11.
Different nanoporous silica materials, MCM-41, MCM-48 and SBA-15, were modified by pyridine and their applications for oral drug delivery system were evaluated. These pyridine functionalized nanoporous silicas were loaded with a water insoluble diorganotin(IV) dichloride complex as an antitumor drug model and its release from them were investigated by changing pH. An efficient pH-responsive carrier system was constructed by coordination of the pyridine group in modified nonoporous materials to tin complex. In vitro, releasing of loaded tin complex was studied in three different kinds of fluids, including a simulated gastric medium and a simulated body fluid. The loading and releasing of the diorganotin(IV) dichloride from various modified nanoporous silicas and also a non-porous silica (SiO2) were investigated, and the results were compared. In addition, the effect of some factors such as pH, time of loading and releasing were investigated through this study.  相似文献   

12.
Highly ordered SBA-15 nanoporous silica containing ethylene, phenylene bridges or/and amine, thiol, vinyl and phenyl surface groups were synthesized by using amphiphilic block copolymer as the structure-directing agent. The XRD data shows high degree of the order of the final structures. Obtained materials have well-developed porous structure—values of specific surface area are in the range 700–1050 m2/g and the sizes of cylindrical mesopores are in the range 6.5–9.5 nm. It was determined that size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with TEOS. A new technique to introduce some amount of pendant amine groups by co-condensation of proper monomers has been proposed. Tetragonal structure was obtained when small amount of vinyl groups was introduced to the system. A new approach of determining pore size based only on the XRD measurements was compared with KJS method, confirming full usefulness of the former for calculation of the size of mesopores in SBA-15 materials. Dedicated to Professor Mietek Jaroniec on the occasion of his 60th birthday.  相似文献   

13.
With initial aging at low temperature for enough time, silicas with large mesoporosity were synthesized using triblock copolymer as template agent under weak acidities. SBA-15 with periodic mesostructure and short mesochannels could be synthesized at pH 2.5–3.0 within weak acidity range, and the surface areas, pore diameters and pore volumes reached up to ca. 1000 m2/g, 8.8 nm and 2.0 cm3/g, respectively, which were significantly higher than those of the conventional SBA-15 synthesized under strong acidities. Mesoporous silica with wormhole structure and abundant textural porosity was formed at pH  3.5. The increased hydrophobic volume of the copolymer micelles at elevated pH values was responsible for the enlargement of mesoporosity in the products. The materials synthesized under weak acidities showed lower hexagonal ordering in comparison to the general SBA-15 synthesized under strong acidities because the decreased hydronium ion concentration induced relatively weaker assembly forces during the synthesis. Nonetheless, the short mesochannels and large pore diameter in the products might be beneficial to some applications in which fast diffusion of molecules is required.  相似文献   

14.
Silica was obtained from rice husk, this type of silica is also known as SiO2-rice, was investigated as drug delivery for the folic acid. The SiO2-rice was obtained from calcinations at 600 °C and its textural properties were compared with mesoporous silica (MS). The maximum folic acid adsorption on SiO2-rice was at the 18 % weight, while MS adsorbs 19 % weight. An important pH effect on the drug released was observed; both silicas released around 35 % of acid folic at pH 7, while at pH 3 only 3 % of the drug was released. Differential Thermal Analyzer analysis suggests that the folic acid was not crystallized into the porous of the silica; therefore, it is possible that the drug was trapped within the complex network of pores preventing their full release. However, the drug released for 400 μg of folic acid, a commercial dose, indicated that until 93 % of drug could be released for the silicas at pH of 5.5; a minor desorption was observed by commercial tablet.  相似文献   

15.
P(EMA-co-HEA)/SiO2 nanocomposites with 0, 15 and 30 wt% of silica were obtained by copolymerization of ethyl methacrylate, EMA, and hydroxyethyl acrylate, HEA, during the simultaneous acid-catalyzed sol–gel polymerization of tetraethoxysilane, TEOS. A surface modification treatment was applied in order to reduce the induction time for hydroxyapatite (HAp) nucleation, combining a previous NaOH attack to increase the number of surface nucleating sites, and an alternate soaking process in Ca and P solutions to form apatite precursors, prior to the immersion in a simulated body fluid (SBF). The NaOH treatment was not effective by itself in shortening the HAp induction time. It introduced sodium carboxylates in the copolymer but hydrolyzed the silica network excessively, thus reducing the surface nucleating potential of its boundary silanols. Therefore, bioactivity was only due to the surface carboxylate groups of the organic phase. Maybe a controlled dissolution extent of the silica network so as to improve bioactivity could be attained by reducing the duration of the NaOH-treatment. This would be interesting in the hybrid with 30 wt% of silica, because its dense silica network is not able to hydrolyze in SBF without any previous treatment, whereas the silica network in the hybrid with 15 wt% of silica hydrolyzes at the surface promoting the deposition of HAp. The CaP treatment was able to coat the surfaces of the samples with a calcium phosphate layer within minutes. This amorphous calcium phosphate acted as HAp precursor, skipping the induction period in SBF.  相似文献   

16.

Abstract  

Organo-modified mesoporous silica SBA-15 has been studied for sorption of carbon dioxide (CO2). The SBA-15 sample was functionalized with a branched chain polymer, polyethylenimine (PEI), of different molecular weights (1,300 and 2,000 g mol−1). Surface modification was carried out by impregnation of silica by PEI or by grafting with (3-chloropropyl)triethoxysilane, followed by substitution of chlorine atoms by PEI ligands. The prepared modified mesoporous materials were characterized by nitrogen adsorption/desorption at 77 K, high-resolution transmission electron microscopy, small-angle X-ray scattering, and thermal methods. Sorption of CO2 was studied by gravimetric method at 303 K. The total amount of sorbed CO2 varied between 0.19–0.67 mmol/g for respective samples. Regeneration of the materials after adsorption was achieved by thermal treatment at 343 K.  相似文献   

17.
The encapsulation of hemoglobin (Hb) on the mesoporous silicas SBA-15 and Au-doped SBA-15 (Au-SBA-15) has been studied as a model protein adsorption system. The influences of solution pH, structure of mesoporous silicas and gold nanoparticles incorporation on Hb immobilization are investigated in detail. The spectral characteristics of Hb/SBA-15 and Hb/Au-SBA-15 nanoconjugate show an absorption curve quite similar to that of native Hb, indicating that Hb retains its higher-order structure in the mesopores of SBA-15. Direct electrochemistry of Hb is obtained when Hb is adsorpted by mesoporous silicas SBA-15 or Au-SBA-15. Moreover, Hb/Au-SBA-15 exerts enhancing electron transfer ability because of the Au incorporation. Additionally, the Hb/Au-SBA-15 displays good electrocatalytic reduction of hydrogen peroxide with a detection limit of 1.0 μM, about 3 times as low as that for the Hb/SBA-15. The Hb/Au-SBA-15 exhibits higher peroxidase-like activity with the apparent Michaelis–Menton constant (Km) of 2.87 mM, significantly lower than the 7.78 mM value for the Hb/SBA-15.  相似文献   

18.
Controlled drug release from bifunctionalized mesoporous silica   总被引:2,自引:0,他引:2  
Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups.  相似文献   

19.
Recently titania synthesis was reported using various structuration procedures, leading to the production of solid presenting high surface area but exhibiting moderate thermal stability. The study presents the synthesis of TiO2/SiO2 nanocomposites, a solid that can advantageously replace bulk titania samples as catalyst support. The silica host support used for the synthesis of the nanocomposite is a SBA-15 type silica, having a well-defined 2D hexagonal pore structure and a large pore size. The control of the impregnation media is important to obtain dispersed titania crystals into the porosity, the best results have been obtained using an impregnation in an excess of solvent. After calcination at low temperature (400 °C), nanocomposites having titania nanodomains (~2–3 nm) located inside the pores and no external aggregates visible are obtained. This nanocomposite exhibits high specific surface area (close to that of the silica host support, even with a titania loading of 55 wt.%) and a narrow pore size distribution. Surprisingly, the increase in calcination temperature up to 800 °C does not allow to detect the anatase to rutile transition. Even at 800 °C, the hexagonal mesoporous structure of the silica support is maintained, and the anatase crystal domain size is evaluated at ~10 nm, a size close to that of the silica host support porosity (8.4 nm). Comparison of their physical properties with the results presented in literature for bulk samples evidenced that these TiO2/SiO2 solids are promising in term of thermal stability.  相似文献   

20.
《Comptes Rendus Chimie》2016,19(10):1166-1173
Partial hydrogenation of palm biodiesel fuel (BDF) over 0.5wt%Pd/SBA-15 and 0.5wt%Pd/Zr-SBA-15 catalysts was examined by using a continuous fixed-bed reactor at 100 °C and 0.3 MPa under an atmosphere of H2, in comparison to the commercial 0.5wt%Pd/γ-Al2O3 catalyst. The results showed that the 0.5wt%Pd/SBA-15 catalyst with high Pd dispersion and fast molecular diffusion through the short channeling pores gave the highest activity and selectivity in partial hydrogenation of polyunsaturated fatty acid methyl esters (FAME) as unstable components of palm BDF into cis-mono-unsaturated FAME as a target component of upgraded palm BDF with excellent oxidation stability and cold flow properties, which makes the addition of antioxidants unnecessary. By contrast, the 0.5wt%Pd/Zr-SBA-15 catalyst with strongly and moderately acidic sites gave low selectivity toward cis-mono-unsaturated FAME. The commercial 0.5wt%Pd/γ-Al2O3 catalyst displayed much lower polyunsaturated FAME conversion and cis-mono-unsaturated FAME selectivity, associated with poor Pd dispersion and slow molecular diffusion through the disordered pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号