首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a complete irredundant set of a class of strong Shoda pairs of a finite group G is computed. The algebraic structure of the rational group algebra of a normally monomial group is thus obtained. A necessary and sufficient condition for G to be normally monomial is derived. The main result is also illustrated by computing a complete set of primitive central idempotents and the explicit Wedderburn decomposition of the rational group algebra of some normally monomial groups.  相似文献   

2.
Andreas Bächle 《代数通讯》2013,41(10):4341-4349
For a group G and a subgroup H of G, this article discusses the normalizer of H in the units of a group ring RG. We prove that H is only normalized by the “obvious” units, namely products of elements of G normalizing H and units of RG centralizing H, provided H is cyclic. Moreover, we show that the normalizers of all subgroups of certain nilpotent and metacyclic groups in the corresponding group rings are as small as possible. These classes contain all dihedral groups, all finite nilpotent groups, and all finite groups with all Sylow subgroups being cyclic.  相似文献   

3.
Selçuk Kayacan 《代数通讯》2018,46(4):1492-1505
The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if HK≠1 where 1 denotes the trivial subgroup of G. In this paper, we classify finite solvable groups whose intersection graphs are not 2-connected and finite nilpotent groups whose intersection graphs are not 3-connected. Our methods are elementary.  相似文献   

4.
We show a method to effectively compute the Wedderburn decomposition and the primitive central idempotents of a semisimple finite group algebra of an abelian-by-supersolvable group G from certain pairs of subgroups of G.  相似文献   

5.
Jinke Hai  Zhengxing Li 《代数通讯》2013,41(7):2613-2627
In this article, it is shown that the normalizer property holds for the following two kinds of finite nilpotent-by-nilpotent groups: (1) G = NwrH is the standard wreath product of N by H, where N is a finite nilpotent group and H is a finite abelian 2-group; (2) G is a finite group having a normal nilpotent subgroup N such that the integral group ring ?(G/N) has only trivial units. Our results generalize a result of Yuanlin Li and extend some ones obtained by Juriaans, Miranda, and Robério.  相似文献   

6.
We give necessary and sufficient conditions under which an amalgamated free product of finitely generated nilpotent groups is a Howson group (that is the intersection of any two finitely generated subgroups is finitely generated). Also we prove that if G = ? t, K | t ?1 At = B ?, where K is a finitely generated and infinite nilpotent group and A, B non-trivial infinite proper subgroups of K, then G is not a Howson group. The problem of deciding when an ascending HNN-extension of a finitely generated nilpotent group is a Howson group is still open.  相似文献   

7.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

8.
Let G be a group and let K be a field of characteristic p>0. Lie nilpotent group algebras of strong Lie nilpotency index up to 11 have already been classified. In this paper, our aim is to classify the group algebras KG which are strongly Lie nilpotent of index 12 or 13.  相似文献   

9.
Let K be a field of characteristic zero. For a torsion-free finitely generated nilpotent group G, we naturally associate four finite dimensional nilpotent Lie algebras over K, ? K (G), grad(?)(? K (G)), grad(g)(exp ? K (G)), and L K (G). Let 𝔗 c be a torsion-free variety of nilpotent groups of class at most c. For a positive integer n, with n ≥ 2, let F n (𝔗 c ) be the relatively free group of rank n in 𝔗 c . We prove that ? K (F n (𝔗 c )) is relatively free in some variety of nilpotent Lie algebras, and ? K (F n (𝔗 c )) ? L K (F n (𝔗 c )) ? grad(?)(? K (F n (𝔗 c ))) ? grad(g)(exp ? K (F n (𝔗 c ))) as Lie algebras in a natural way. Furthermore, F n (𝔗 c ) is a Magnus nilpotent group. Let G 1 and G 2 be torsion-free finitely generated nilpotent groups which are quasi-isometric. We prove that if G 1 and G 2 are relatively free of finite rank, then they are isomorphic. Let L be a relatively free nilpotent Lie algebra over ? of finite rank freely generated by a set X. Give on L the structure of a group R, say, by means of the Baker–Campbell–Hausdorff formula, and let H be the subgroup of R generated by the set X. We show that H is relatively free in some variety of nilpotent groups; freely generated by the set X, H is Magnus and L ? ??(H) ? L ?(H) as Lie algebras. For relatively free residually torsion-free nilpotent groups, we prove that ? K and L K are isomorphic as Lie algebras. We also give an example of a finitely generated Magnus nilpotent group G, not relatively free, such that ??(G) is not isomorphic to L ?(G) as Lie algebras.  相似文献   

10.
11.
We prove that a finite solvable group G admitting a Frobenius group FH of automorphisms of coprime order with kernel F and complement H such that [G, F] = G and C C G (F)(h) = 1 for all nonidentity elements h ∈ H, is of nilpotent length equal to the nilpotent length of the subgroup of fixed points of H.  相似文献   

12.
The nilpotent graph of a group G is a simple graph whose vertex set is G?nil(G), where nil(G) = {y ∈ G | ? x, y ? is nilpotent ? x ∈ G}, and two distinct vertices x and y are adjacent if ? x, y ? is nilpotent. In this article, we show that the collection of finite non-nilpotent groups whose nilpotent graphs have the same genus is finite, derive explicit formulas for the genus of the nilpotent graphs of some well-known classes of finite non-nilpotent groups, and determine all finite non-nilpotent groups whose nilpotent graphs are planar or toroidal.  相似文献   

13.
In a recent paper, A. Bialostocki (Israel J. Math.41 (1982), 261-273) has defined a nilpotent injector in an arbitrary finite group G to be a maximal nilpotent subgroup of G, containing a subgroup H of G of maximal order satisfying class (H) ≤2. In the present paper, the author determines the nilpotent injectors of GL(n, q) and shows that they form a unique conjugacy class of subgroups of GL(n, q). It is also proved that if n ≠ 2 or n = 2 and q ≠ 9 is not a Fermat prime >3, then the nilpotent injectors of GL(n, q) are the nilpotent subgroups of maximal order.  相似文献   

14.
Following Rose, a subgroup H of a group G is called contranormal, if G = H G . In certain sense, contranormal subgroups are antipodes to subnormal subgroups. It is well known that a finite group is nilpotent if and only if it has no proper contranormal subgroups. However, for the infinite groups this criterion is not valid. There are examples of non-nilpotent infinite groups whose subgroups are subnormal; in paricular, these groups have no contranormal subgroups. Nevertheless, for some classes of infinite groups, the absence of contranormal subgroups implies the nilpotency of the group. The current article is devoted to the search of such classes. Some new criteria of nilpotency in certain classes of infinite groups have been established.  相似文献   

15.
16.
The algebras of Kleinian type are finite-dimensional semisimple rational algebras A such that the group of units of an order in A is commensurable with a direct product of Kleinian groups. We classify the Schur algebras of Kleinian type and the group algebras of Kleinian type. As an application, we characterize the group rings RG, with R an order in a number field and G a finite group, such that the group of units of RG is virtually a direct product of free-by-free groups.  相似文献   

17.
Let G be a finite group. Two subgroups H and K of G are said to permute if áH,K? = HK = KH\langle H,K\rangle = HK = KH. A subgroup H of G is S-quasinormal in G if it permutes with every Sylow subgroup of G. In this paper we investigate the influence of S-quasinormality of some subgroups of prime power order of a finite group on its supersolvability.  相似文献   

18.
Semra Pamuk 《代数通讯》2013,41(7):3220-3243
Let G be a finite group and ? be a family of subgroups of G closed under conjugation and taking subgroups. We consider the question whether there exists a periodic relative ?-projective resolution for ? when ? is the family of all subgroups H ≤ G with rk H ≤ rkG ? 1. We answer this question negatively by calculating the relative group cohomology ?H*(G, 𝔽2) where G = ?/2 × ?/2 and ? is the family of cyclic subgroups of G. To do this calculation we first observe that the relative group cohomology ?H*(G, M) can be calculated using the ext-groups over the orbit category of G restricted to the family ?. In second part of the paper, we discuss the construction of a spectral sequence that converges to the cohomology of a group G and whose horizontal line at E 2 page is isomorphic to the relative group cohomology of G.  相似文献   

19.
We establish a series of new properties of a finite group G = AB with nilpotent subgroups A and B.  相似文献   

20.
Abstract

A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号