首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A linear elliptic control problem with pointwise state constraints is considered. These constraints are given in the domain. In contrast to this, the control acts only at the boundary. We propose a general concept using virtual control in this paper. The virtual control is introduced in objective, state equation, and constraints. Moreover, additional control constraints for the virtual control are investigated. An error estimate for the regularization error is derived as main result of the paper. The theory is illustrated by numerical tests.  相似文献   

2.
In this paper we propose a computationally attractive numerical method for determining the optimal control of constrained linear dynamic systems with a quadratic performance. The method is based upon constructing the mth degree interpolating polynomials, using Chebyshev nodes, to approximate the control and the state vectors. The system dynamics are collocated at Chebyshev nodes. The performance index is discretized by a cell averaging method. The state and control inequality constraints are converted into algebraic inequalities through collocation at the nodes. The linear quadratic optimal control problem is thereby transformed into a quadratic programming one. Simulation studies demonstrate computational advantages relative to a standard Riccati method, a classical Chebyshev-based method, Fourier-based method and other methods in the literature.  相似文献   

3.
Local convergence of the Lagrange-Newton method for optimization problems with two-norm discrepancy in abstract Banach spaces is investigated. Based on stability analysis of optimization problems with two-norm discrepancy, sufficient conditions for local superlinear convergence are derived. The abstract results are applied to optimal control problems for nonlinear ordinary differential equations subject to control and state constraints.This research was completed while the second author was a visitor at the University of Bayreuth, Germany, supported by grant No. CIPA3510CT920789 from the Commission of the European Communities.  相似文献   

4.
In the present work, we apply a variational discretization proposed by the first author in (Comput. Optim. Appl. 30:45–61, 2005) to Lavrentiev-regularized state constrained elliptic control problems. We extend the results of (Comput. Optim. Appl. 33:187–208, 2006) and prove weak convergence of the adjoint states and multipliers of the regularized problems to their counterparts of the original problem. Further, we prove error estimates for finite element discretizations of the regularized problem and investigate the overall error imposed by the finite element discretization of the regularized problem compared to the continuous solution of the original problem. Finally we present numerical results which confirm our analytical findings.  相似文献   

5.
A Kind of direct methods is presented for the solution of optimal control problems with state constraints.These methods are sequential quadratic programming methods.At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and Linear approximations to constraints is solved to get a search direction for a merit function.The merit function is formulated by augmenting the Lagrangian funetion with a penalty term.A line search is carried out along the search direction to determine a step length such that the merit function is decreased.The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadrade programming methods.  相似文献   

6.
We consider Tikhonov regularization of control-constrained optimal control problems. We present new a-priori estimates for the regularization error assuming measure and source-measure conditions. In the special case of bang–bang solutions, we introduce another assumption to obtain the same convergence rates. This new condition turns out to be useful in the derivation of error estimates for the discretized problem. The necessity of the just mentioned assumptions to obtain certain convergence rates is analyzed. Finally, a numerical example confirms the analytical findings.  相似文献   

7.
A computational algorithm for solving a class of optimal control problems involving terminal and continuous state constraints of inequality type was developed in Ref. 1. In this paper, we extend the results of Ref. 1 to a more general class of constrained time-delayed optimal control problems, which involves terminal state equality constraints as well as terminal state inequality constraints and continuous state constraints. Two examples have been solved to illustrate the efficiency of the method.  相似文献   

8.
A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.  相似文献   

9.
The aim of this paper is to present a simple qualification condition for control elliptic problems involving constraints both on the control and the state, when there are both a distributed and a boundary control. We establish a general maximum principle and give some examples. Then we study the particular case when the control is only a boundary one and we present a Lagrangian Algorithm with a few numerical results.  相似文献   

10.
11.
Ira Neitzel  Fredi Tröltzsch 《PAMM》2008,8(1):10865-10866
We consider Lavrentiev regularization for a class of semilinear parabolic optimal control problems with control constraints and pointwise state constraints and review convergence results for local solutions under Slater type assumptions as well as quadratic growth conditions. Moreover, we state a local uniqueness result for local optima under the assumptions of strict separability of the active sets as well as a second order sufficient condition for the regularized solution. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We propose a new heuristic approach to overcome convergence order restrictions implied by the low regularity of the optimal control due to the activity interface of control constraints. Aligning the mesh with the interface yields an improved approximation of the control. Utility of the approach is demonstrated by numerical experiments. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The Euler approximation in state constrained optimal control   总被引:1,自引:0,他引:1  

We analyze the Euler approximation to a state constrained control problem. We show that if the active constraints satisfy an independence condition and the Lagrangian satisfies a coercivity condition, then locally there exists a solution to the Euler discretization, and the error is bounded by a constant times the mesh size. The proof couples recent stability results for state constrained control problems with results established here on discrete-time regularity. The analysis utilizes mappings of the discrete variables into continuous spaces where classical finite element estimates can be invoked.

  相似文献   


14.
We consider a family of nonlinear optimal control problems depending on a parameter. Under the assumption of a second-order sufficient optimality condition it is shown that the solutions of the problems as well as the associated Lagrange multipliers are Lipschitz continuous functions of the parameter.  相似文献   

15.
In a recent, related, paper, necessary conditions in the form of a Maximum Principle were derived for optimal control problems with time delays in both state and control variables. Different versions of the necessary conditions covered fixed end-time problems and, under additional hypotheses, free end-time problems. These conditions improved on previous conditions in the following respects. They provided the first fully non-smooth Pontryagin Maximum Principle for problems involving delays in both state and control variables, only special cases of which were previously available. They provide a strong version of the Weierstrass condition for general problems with possibly non-commensurate control delays, whereas the earlier literature does so only under structural assumptions about the dynamic constraint. They also provided a new ‘two-sided’ generalized transversality condition, associated with the optimal end-time. This paper provides an extension of the Pontryagin Maximum Principle of the earlier paper for time delay systems, to allow for the presence of a unilateral state constraint. The new results fully recover the necessary conditions of the earlier paper when the state constraint is absent, and therefore retain all their advantages but in a setting of greater generality.  相似文献   

16.
We propose a generalization of the structured doubling algorithm to compute invariant subspaces of structured matrix pencils that arise in the context of solving linear quadratic optimal control problems. The new algorithm is designed to attain better accuracy when the classical Riccati equation approach for the solution of the optimal control problem is not well suited because the stable and unstable invariant subspaces are not well separated (because of eigenvalues near or on the imaginary axis) or in the case when the Riccati solution does not exist at all. We analyze the convergence of the method and compare the new method with the classical structured doubling algorithm as well as some structured QR methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss–Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.  相似文献   

18.
We consider the fast and efficient numerical solution of linear-quadratic optimal control problems with additional constraints on the control. Discretization of the first-order conditions leads to an indefinite linear system of saddle point type with additional complementarity conditions due to the control constraints. The complementarity conditions are treated by a primal-dual active set strategy that serves as outer iteration. At each iteration step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solution. To this end, we use a smoother which is based on an inexact constraint preconditioner.We present numerical results which show that the proposed multigrid method possesses convergence rates of the same order as for the underlying (elliptic) PDE problem. Furthermore, when combined with a nested iteration, the solver is of optimal complexity and achieves the solution of the optimization problem at only a small multiple of the cost for the PDE solution.  相似文献   

19.
A numerical method for solving non‐linear optimal control problems with inequality constraints is presented in this paper. The method is based upon Legendre wavelet approximations. The properties of Legendre wavelets are first presented. The operational matrix of integration and the Gauss method are then utilized to reduce the optimal control problem to the solution of algebraic equations. The inequality constraints are converted to a system of algebraic equalities; these equalities are then collocated at the Gauss nodes. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号