首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume ${\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)}Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume V(k)=(\frac-k3)3Volg(k)(S){\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)} is monotonically decreasing in the expanding direction and bounded below by Vinf=(\frac-16Y(S))\frac32{\mathcal{V}_{\rm \inf}=\left(\frac{-1}{6}Y(\Sigma)\right)^{\frac{3}{2}}}. Inspired by this fact we define the ground state of the manifold Σ as “the limit” of any sequence of CMC states {(g i , K i )} satisfying: (i) k i  = −3, (ii) Viˉ Vinf{\mathcal{V}_{i}\downarrow \mathcal{V}_{\rm inf}}, (iii) Q 0((g i , K i )) ≤ Λ, where Q 0 is the Bel–Robinson energy and Λ is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of Σ. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally, consider a long time and cosmologically normalized flow ([(g)\tilde],[(K)\tilde])(s)=((\frac-k3)2g,(\frac-k3)K){(\tilde{g},\tilde{K})(\sigma)=\left(\left(\frac{-k}{3}\right)^{2}g,\left(\frac{-k}{3}\right)K\right)}, where s = -ln(-k) ? [a,¥){\sigma=-\ln (-k)\in [a,\infty)}. We prove that if [(E1)\tilde]=E1(([(g)\tilde],[(K)\tilde])) £ L{\tilde{\mathcal{E}_{1}}=\mathcal{E}_{1}((\tilde{g},\tilde{K}))\leq \Lambda} (where E1=Q0+Q1{\mathcal{E}_{1}=Q_{0}+Q_{1}}, is the sum of the zero and first order Bel–Robinson energies) the flow ([(g)\tilde],[(K)\tilde])(s){(\tilde{g},\tilde{K})(\sigma)} persistently geometrizes the three-manifold Σ and the geometrization is the ground state if Vˉ Vinf{\mathcal{V}\downarrow \mathcal{V}_{\rm inf}}.  相似文献   

2.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

3.
Let (M,[(g)\tilde]){(\mathcal {M},\tilde{g})} be an N-dimensional smooth compact Riemannian manifold. We consider the singularly perturbed Allen–Cahn equation
e2 D[(g)\tilde] u  +  (1 - u2 )u = 0     in  M,\varepsilon ^2 \Delta _{\tilde g} u \, + \, (1 - u^2 )u\, =\, 0 \quad {\rm{in}} \, \mathcal {M},  相似文献   

4.
Let \mathbbF\mathbb{F} be a p-adic field, let χ be a character of \mathbbF*\mathbb{F}^{*}, let ψ be a character of \mathbbF\mathbb{F} and let gy-1\gamma_{\psi}^{-1} be the normalized Weil factor associated with a character of second degree. We prove here that one can define a meromorphic function [(g)\tilde](c,s,y)\widetilde{\gamma}(\chi ,s,\psi) via a similar functional equation to the one used for the definition of the Tate γ-factor replacing the role of the Fourier transform with an integration against y·gy-1\psi\cdot\gamma_{\psi}^{-1}. It turns out that γ and [(g)\tilde]\widetilde{\gamma} have similar integral representations. Furthermore, [(g)\tilde]\widetilde{\gamma} has a relation to Shahidi‘s metaplectic local coefficient which is similar to the relation γ has with (the non-metalpectic) Shahidi‘s local coefficient. Up to an exponential factor, [(g)\tilde](c,s,y)\widetilde{\gamma}(\chi,s,\psi) is equal to the ratio \fracg(c2,2s,y)g(c,s+\frac12,y)\frac{\gamma(\chi^{2},2s,\psi)}{\gamma(\chi,s+\frac{1}{2},\psi)}.  相似文献   

5.
Let 1 ≤ mn. We prove various results about the chessboard complex M m,n , which is the simplicial complex of matchings in the complete bipartite graph K m,n . First, we demonstrate that there is nonvanishing 3-torsion in [(H)\tilde]d(\sf Mm,n; \mathbb Z){{\tilde{H}_d({\sf M}_{m,n}; {\mathbb Z})}} whenever \fracm+n-43 £ dm-4{{\frac{m+n-4}{3}\leq d \leq m-4}} and whenever 6 ≤ m < n and d = m − 3. Combining this result with theorems due to Friedman and Hanlon and to Shareshian and Wachs, we characterize all triples (m, n, d ) satisfying [(H)\tilde]d (\sf Mm,n; \mathbb Z) 1 0{{\tilde{H}_d \left({\sf M}_{m,n}; {\mathbb Z}\right) \neq 0}}. Second, for each k ≥ 0, we show that there is a polynomial f k (a, b) of degree 3k such that the dimension of [(H)\tilde]k+a+2b-2 (\sf Mk+a+3b-1,k+2a+3b-1; \mathbb Z3){{\tilde{H}_{k+a+2b-2}}\,\left({{\sf M}_{k+a+3b-1,k+2a+3b-1}}; \mathbb Z_{3}\right)}, viewed as a vector space over \mathbbZ3{\mathbb{Z}_3}, is at most f k (a, b) for all a ≥ 0 and bk + 2. Third, we give a computer-free proof that [(H)\tilde]2 (\sf M5,5; \mathbb Z) @ \mathbb Z3{{\tilde{H}_2 ({\sf M}_{5,5}; \mathbb {Z})\cong \mathbb Z_{3}}}. Several proofs are based on a new long exact sequence relating the homology of a certain subcomplex of M m,n to the homology of M m-2,n-1 and M m-2,n-3.  相似文献   

6.
We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set $\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\}We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set s(A)={ilk;k ? \mathbb\mathbbZ*}\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\} is discrete and satisfies ?\frac1|lk|ldkn < ¥\sum \frac{1}{|\lambda_{k}|^{\ell}\delta_{k}^{n}}<\infty , where is a nonnegative integer and dk=min(\frac|lk+1-lk|2,\frac|lk-1-lk|2)\delta _{k}=\min(\frac{|\lambda_{k+1}-\lambda _{k}|}{2},\frac{|\lambda _{k-1}-\lambda _{k}|}{2}) . In this case, Theorem 3, we show by using Gelfand’s Theorem that there exists a family of projectors (Pk)k ? \mathbb\mathbbZ*(P_{k})_{k\in\mathbb{\mathbb{Z}}^{*}} such that, for any xD(A n+ ), the decomposition ∑P k x=x holds.  相似文献   

7.
Let Ω be a domain in ${\mathbb{C}^{2}}Let Ω be a domain in \mathbbC2{\mathbb{C}^{2}}, and let p: [(W)\tilde]? \mathbbC2{\pi: \tilde{\Omega}\rightarrow \mathbb{C}^{2}} be its envelope of holomorphy. Also let W¢=p([(W)\tilde]){\Omega'=\pi(\tilde{\Omega})} with i: W\hookrightarrow W¢{i: \Omega \hookrightarrow \Omega'} the inclusion. We prove the following: if the induced map on fundamental groups i*:p1(W) ? p1(W¢){i_{*}:\pi_{1}(\Omega) \rightarrow \pi_{1}(\Omega')} is a surjection, and if π is a covering map, then Ω has a schlicht envelope of holomorphy. We then relate this to earlier work of Fornaess and Zame.  相似文献   

8.
We establish two new lower bounds for the halfspace range searching problem: Given a set of n points in ℝ d , where each point is associated with a weight from a commutative semigroup, compute the semigroup sum of the weights of the points lying within any query halfspace. Letting m denote the space requirements, we prove a lower bound for general semigroups of [\varOmega\tilde](n1-1/(d+1)/m1/(d+1))\widetilde{\varOmega}(n^{1-1/(d+1)}/m^{1/(d+1)}) and for integral semigroups of [\varOmega\tilde](n/m1/d)\widetilde{\varOmega}(n/m^{1/d}).  相似文献   

9.
We give a simple explanation of numerical experiments of V. Arnold with two sequences of symmetric numerical semigroups, S(4,6+4k,87−4k) and S(9,3+9k,85−9k) generated by three elements. We present a generalization of these sequences by numerical semigroups S(r12,r1r2+r12k,r3-r12k)\mathsf{S}(r_{1}^{2},r_{1}r_{2}+r_{1}^{2}k,r_{3}-r_{1}^{2}k), k∈ℤ, r 1,r 2,r 3∈ℤ+, r 1≥2 and gcd(r 1,r 2)=gcd(r 1,r 3)=1, and calculate their universal Frobenius number Φ(r 1,r 2,r 3) for the wide range of k providing semigroups be symmetric. We show that this type of semigroups admit also nonsymmetric representatives. We describe the reduction of the minimal generating sets of these semigroups up to {r12,r3-r12k}\{r_{1}^{2},r_{3}-r_{1}^{2}k\} for sporadic values of k and find these values by solving the quadratic Diophantine equation.  相似文献   

10.
We shall present short proofs for type II (simultaneous) Hermite–Padé approximations of the generalized hypergeometric and q-hypergeometric series
F(t)=?n=0\frac?k=0n-1P(k)?k=0n-1Q(k)tn,       Fq(t)=?n=0\frac?k=0n-1P(qk)?k=0n-1Q(qk)tn,F(t)=\sum_{n=0}^{\infty}\frac{\prod_{k=0}^{n-1}P(k)}{\prod _{k=0}^{n-1}Q(k)}t^n,\qquad F_q(t)=\sum_{n=0}^{\infty}\frac{\prod_{k=0}^{n-1}P(q^k)}{\prod _{k=0}^{n-1}Q(q^k)}t^n,  相似文献   

11.
Let A, B be uniform algebras. Suppose that A 0, B 0 are subgroups of A −1, B −1 that contain exp A, exp B respectively. Let α be a non-zero complex number. Suppose that m, n are non-zero integers and d is the greatest common divisor of m and n. If T : A 0B 0 is a surjection with ||T(f)mT(g)n - a|| = ||fmgn - a||{\|T(f)^{m}T(g)^{n} - \alpha\|_{\infty} = \|f^{m}g^{n} - \alpha\|_{\infty}} for all f,g ? A0{f,g \in A_0}, then there exists a real-algebra isomorphism [(T)\tilde] : A ? B{\tilde{T} : A \rightarrow B} such that [(T)\tilde](f)d = (T(f)/T(1))d{\tilde{T}(f)^d = (T(f)/T(1))^d} for every f ? A0{f \in A_0}. This result leads to the following assertion: Suppose that S A , S B are subsets of A, B that contain A −1, B −1 respectively. If m, n > 0 and a surjection T : S A S B satisfies ||T(f)mT(g)n - a|| = ||fmgn - a||{\|T(f)^{m}T(g)^{n} - \alpha\|_{\infty} = \|f^{m}g^{n} - \alpha\|_{\infty}} for all f, g ? SA{f, g \in S_A}, then there exists a real-algebra isomorphism [(T)\tilde] : A ? B{\tilde{T} : A \rightarrow B} such that [(T)\tilde](f)d = (T(f)/T(1))d{\tilde{T}(f)^d = (T(f)/T(1))^d} for every f ? SA{f \in S_A}. Note that in these results and elsewhere in this paper we do not assume that T(exp A) = exp B.  相似文献   

12.
A new generalized Radon transform R α, β on the plane for functions even in each variable is defined which has natural connections with the bivariate Hankel transform, the generalized biaxially symmetric potential operator Δ α, β , and the Jacobi polynomials Pk(b, a)(t)P_{k}^{(\beta,\,\alpha)}(t). The transform R α, β and its dual Ra, b*R_{\alpha,\,\beta}^{\ast} are studied in a systematic way, and in particular, the generalized Fuglede formula and some inversion formulas for R α, β for functions in La, bp(\mathbbR2+)L_{\alpha,\,\beta}^{p}(\mathbb{R}^{2}_{+}) are obtained in terms of the bivariate Hankel–Riesz potential. Moreover, the transform R α, β is used to represent the solutions of the partial differential equations Lu:=?j=1majDa, bju=fLu:=\sum_{j=1}^{m}a_{j}\Delta_{\alpha,\,\beta}^{j}u=f with constant coefficients a j and the Cauchy problem for the generalized wave equation associated with the operator Δ α, β . Another application is that, by an invariant property of R α, β , a new product formula for the Jacobi polynomials of the type Pk(b, a)(s)C2ka+b+1(t)=còòPk(b, a)P_{k}^{(\beta,\,\alpha)}(s)C_{2k}^{\alpha+\beta+1}(t)=c\int\!\!\int P_{k}^{(\beta,\,\alpha)} is obtained.  相似文献   

13.
We present expansions of real numbers in alternating s-adic series (1 < sN), in particular, s-adic Ostrogradskii series of the first and second kind. We study the “geometry” of this representation of numbers and solve metric and probability problems, including the problem of structure and metric-topological and fractal properties of the distribution of the random variable
x = \frac1st1 - 1 + ?k = 2 \frac( - 1 )k - 1st1 + t2 + ... + tk - 1, {\xi } = \frac{1}{s^{{\tau_1} - 1}} + \sum\limits_{k = 2}^\infty {\frac{{\left( { - 1} \right)}^{k - 1}}{s^{{\tau_1} + {\tau_2} + ... + {\tau_k} - 1}},}  相似文献   

14.
In this paper, we reprove that: (i) the Aluthge transform of a complex symmetric operator [(T)\tilde] = |T|\frac12 U|T|\frac12\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} is complex symmetric, (ii) if T is a complex symmetric operator, then ([(T)\tilde])*(\tilde{T})^{*} and [(T*)\tilde]\widetilde{T^{*}} are unitarily equivalent. And we also prove that: (iii) if T is a complex symmetric operator, then [((T*))\tilde]s,t\widetilde{(T^{*})}_{s,t} and ([(T)\tilde]t,s)*(\tilde{T}_{t,s})^{*} are unitarily equivalent for s, t > 0, (iv) if a complex symmetric operator T belongs to class wA(t, t), then T is normal.  相似文献   

15.
An oriented tripartite graph is the result of assigning a direction to each edge of a simple tripartite graph. For any vertex x in an oriented tripartite graph D(U,V,W), let d x + and d x denote the outdegree and indegree respectively of x. Define $ a_{u_i } = d_{u_i }^ + - d_{u_i }^ - , b_{v_j } = d_{v_j }^ + - d_{v_j }^ - $ a_{u_i } = d_{u_i }^ + - d_{u_i }^ - , b_{v_j } = d_{v_j }^ + - d_{v_j }^ - and $ c_{w_k } = d_{w_k }^ + - d_{w_k }^ - $ c_{w_k } = d_{w_k }^ + - d_{w_k }^ - as the imbalances of the vertices u i in U, v j in V and w k in W respectively. In this paper, we obtain criteria for sequences of integers to be the imbalances of some oriented tripartite graph.  相似文献   

16.
(w, c) ? R2, u ? Lloc3 (RN, C)\font\Opr=msbm10 at 8pt \def\Op#1{\hbox{\Opr{#1}}}(\omega, c)\in {\Op R}^2, {\upsilon} \in L_{\rm loc}^3 ({\Op R}^N, {\bf C}) and x||j||L(RN×R)2 £ max{0, 1-w+[(c2)/4]}.\font\Opr=msbm10 at 8pt \def\Op#1{\hbox{\Opr{#1}}}\Vert\varphi\Vert_{L^\infty({\Op R}^N\times{\Op R})}^2 \le \max\bigg\{0, 1-\omega+{c^2\over 4}\bigg\}.  相似文献   

17.
We discuss spectral properties of the selfadjoint operator - \fracd2dt2 + ( \fractk + 1k + 1 - a )2 \begin{gathered} - \frac{{{d^2}}}{{d{t^2}}} + {\left( {\frac{{{t^{k + 1}}}}{{k + 1}} - \alpha } \right)^2} \hfill \\ \hfill \\ \end{gathered} in L 2(ℝ) for odd integers k. We prove that the minimum over α of the ground state energy of this operator is attained at a unique point which tends to zero as k tends to infinity. We also show that the minimum is nondegenerate. These questions arise naturally in the spectral analysis of Schr?dinger operators with magnetic field. Bibliography: 13 titles. Illustrations: 2 figures.  相似文献   

18.
The article studies diagnostic tests for local k -fold coalescences of variables in Boolean functions f( [(x)\tilde]n )( 1 £ kn,  1 £ t £ 22k ) f\left( {{{\tilde{x}}^n}} \right)\left( {1 \leq k \leq n,\;1 \leq t \leq {2^{{2^k}}}} \right) . Upper and lower bounds are proved for the Shannon function of the length of the diagnostic test for local k -fold coalescences generated by the system of functions Ftk \Phi_t^k . The Shannon function of the length of a complete diagnostic test for local k -fold coalescences behaves asymptotically as 2 k (n − k + 1) for n → ∞, k → ∞.  相似文献   

19.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

20.
In this paper we obtain a new regularity criterion for weak solutions to the 3D MHD equations. It is proved that if div( \fracu|u|) \mathrm{div}( \frac{u}{|u|}) belongs to L\frac21-r( 0,T;[(X)\dot]r( \mathbbR3) ) L^{\frac{2}{1-r}}( 0,T;\dot{X}_{r}( \mathbb{R}^{3}) ) with 0≤r≤1, then the weak solution actually is regular and unique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号