首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

2.
The crystal structure of K2Cu3(As2O6)2 was determined from single-crystal X-ray data by a direct method strategy and Fourier summations [a = 10.359(4) Å, B = 5.388(2)Å, C = 11.234(4) Å, β = 110.48(2)°; space group C2/m; Z = 2; Rw = 0.025 for 1199 reflections up to sin /λ = 0.81 Å−1]. In detail, the structure consists of As(V)O4 tetrahedra and As(III)O3 pyramids linked by a common O corner atom to [As(V)As(III)O6]4− groups with symmetry m. The bridging bonds As(V)---O [1.749(3) Å] and As(III)---O [1.838(2) Å] are definitely longer than the other As(V)---O bonds [mean 1.669 Å] and As(III)---O bonds [1.764(2) Å, 2×]. The angle As(V)---O---As(III) is 123.0(1)°. The Cu atoms are [4 + 2]- and [4 + 1]-, and the K atom is [9]-coordinated to oxygen atoms. The As2O6 groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of K2Cu3(As2O6)2 suitable for X-ray work were synthesized under hydrothermal conditions.  相似文献   

3.
The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C6H14N2)[Fe(H2O)6](SO4)2, were determined at room temperature and at −173 °C from single-crystal X-ray diffraction. At 20 °C, it crystallises in the monoclinic symmetry, centrosymmetric space group P21/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) Å, β=95.426(5)° and V=870.5(8) Å3. The structure consists of [Fe(H2O)6]2+ and disordered (C6H14N2)2+ cations and (SO4)2− anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at −2.3 °C, characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor–ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) Å, β=120.2304(8)°, Z=16 and V=6868.7(2) Å3. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide.  相似文献   

4.
The synthesis and X-ray structure of a new cluster compound (Pr4N)2Co[Re6S8(CN)6] · 6H2O is reported. It crystallizes in orthorhombic symmetry, P212121 space group with four formula units per unit cell. The following parameters were found: a = 17.942(9) Å, b = 17.979(4) Å, c = 16.344(8) Å, V=5272 0rA3, ρcalc=2.607 g cm−1; final R=0.0331. The compound was prepared by interaction of layered Cs2Co[Re6S8(CN)6] · 2H2O with aqueous solution of Pr4NBr. This interaction results in cleavage of covalently linked {Co(H2O)2Re6S8(CN)6}2− sheets and in formation of isolated fragments {Co(H2O)5Re6S8(CN)6}u2−. Heating of (Pr4N)2Co[Re6S8(CN)6] · 6H2O results in elimination of two water molecules and in formation of (Pr4N)2Co[Re6S8(CN)6] · 4H2O containing infinite -Co(H2O)4-NC-Re6S8(CN) 4-CN-Co(H2O)4-chains.  相似文献   

5.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

6.
Treatment of the vanadium(II) tetrahydroborate complex trans-V(η1-BH4)2(dmpe)2 with (trimethylsilyl) methyllithium gives the new vanadium(II) alkyl cis-V(CH2SiMe3)2(dmpe)2, where dmpe is the chelating diphosphine 1,2-bis(dimethylphosphino)ethane. Interestingly, this complex could not be prepared from the chloride starting material VCl2(dmpe)2. The CH2SiMe3 complex has a magnetic moment of 3.8 μB, and has been characterized by 1H NMR and EPR spectroscopy. The cis geometry of the CH2SiMe3 complex is somewhat unexpected, but in fact the structure can be rationalized on steric grounds. The X-ray crystal structure of cis-V(CH2SiMe3)2(dmpe)2 is described along with that of the related vanadium(II) alkyl complex trans-VMe2(dmpe)2. Comparisons of the bond distances and angles for VMe2(dmpe) 2, V---C = 2.310(5) Å, V---P = 2.455(5) Å, and P---V---P = 83.5(2)° with those of V(CH2SiMe3)2(dmpe)2, V---C = 2.253(3) Å, V---P = 2.551(1) Å, and P ---V---P = 79.37(3)° show differences due to the differing trans influences of alkyl and phosphine ligands, and due to steric crowding in latter molecule. The V---P bond distances also suggest that metal-phosphorus π-back bonding is important in these early transition metal systems. Crystal data for VMe2(dmpe)2 at 25°C: space group P21/n, with a = 9.041(1) Å, b = 12.815(2) Å, c = 9.905(2) Å, β = 93.20(1)°, V = 1145.8(5) Å3, Z = 2, RF = 0.106, and RwF =0.127 for 74 variables and 728 data for which I 2.58 σ(I); crystal data for V(CH2SiMe3)2(dmpe)2 at −75°C: space group C2/c, with a = 9.652(4) Å, b = 17.958(5) Å, c = 18.524(4) Å, β = 102.07(3)°, V= 3140(3) Å3, Z = 4, RF = 0.033, and RwF = 0.032 for 231 variables and 1946 data for which I 2.58 σ(I).  相似文献   

7.
A novel thioantimonate(III) [(CH3NH3)1.03K2.97]Sb12S20·1.34H2O was synthesized hydrothermally. It crystallizes in space groupP , witha=11.9939(7) Å,b=12.8790(8) Å,c=14.9695(9) Å,α=100.033(1)°,β=99.691(1)°,γ=108.582(1)°,V=2095.3(2) Å3, andZ=2. The structure is determined from single crystal X-ray diffraction data collected at room temperature and refined toR(F)=0.037. In the crystal structure, each Sb(III) atoms has short bonds (2.37–2.58 Å) to three S atoms. The pyramidal [SbS3] groups share common S atoms forming two types of centrosymmetric [Sb12S20] rings with the same topology. These rings are interconnected by weaker Sb–S bonds (2.92–3.29 Å) into 2-dimensional layers. Adjacent layers are parallel with K+and CH3NH+3ions and H2O molecules located between them. Variation of bond valence sums calculated for the Sb(III) cations is found to be correlated with the coordination geometry. This is interpreted as due to the stereochemical activity of their lone electron pairs.  相似文献   

8.
The hydrothermal synthesis, crystal structure and some properties of a zinc phosphite with a neutral cluster, [Zn(2,2′-bipy)]2(H2PO3)4, are reported. This compound crystallizes in the triclinic system of space group P-1 (No. 2), a=8.3067(5) Å, b=8.9545(4) Å, c=10.0893(6) Å, α=95.448(2)°, β=99.7530(10)°, γ=103.461(2)°, V=712.23(7) Å3, Z=1. The cluster consists of 4-membered rings formed by alternating ZnO3N2 square pyramids and H2PO3 pseudo pyramids, with two “hanging” H2PO3 groups attached to each of the Zn centers. The clusters are linked together by extensive multipoint hydrogen bonding involving the phosphite units to form a sheet-like structure. This compound represents the first example of zinc phosphite with P---OH bonds. An intense photoluminescence was observed from this compound upon photoexcitation at 388 nm.  相似文献   

9.
A series of paramagnetic clusters of the composition [(Ta6Cl12)Cl(H2O)5][HgX4] · 9H2)O (X = Cl, Br, I) has been prepared by the reaction of [Ta6Cl12]3+ methanol-water solutions with HgX2 and NaX halides. The structure of [(Ta6Cl12)Cl(H2O)5][HgBr4] · 9H2O has been solved by X-ray diffraction in the cubic space group Fd 3m. Crystal data: a = 20.036(2) Å, V = 8043.0(1) Å3, Z = 8, R = 0.048 (Rw = 0.051). The structure is composed of an octahedral [(Ta6Cl12)Cl(H2O)5]2+ cluster cation, tetrahedral [HgBr4]2− anion and crystal water molecules. The 2mm symmetry of the octahedron is reduced by the statistical distribution of the five water molecules, O(1), and chlorine, Cl(2), at the terminal coordination sites. Thus, the distances Ta-O(1) and Ta-Cl(2) are averaged to the value of 2.32(2) Å. The Ta-Ta and Ta-Cl(1) bond distances are 2.911(1) Å and 2.440(3) Å, respectively, whereas the Hg-Br bond distance is 2.564(3) Å. The cluster [(Ta6Cl12)Cl(H2O)5][HgBr4] · 9H2O is semiconducting with two levels governing conductivity with respective activation energies, Eal = 0.24 eV and Ea2 = 0.17 eV.  相似文献   

10.
[C4H9)4N]2[Mo2O7] reacts with a variety of organic species containing α-diketone groups to give tetranuclear complexes of general composition [RMo4O15X]3−. The complexes [(C4H9)4N]3[(C9H4O)Mo4O15(OCH3)] (I), [(C4H9)4N]3[(C14H10)Mo4O15(C6H5CO2)] (11) and [(C4H9)4N]3[(C14H8)Mo4O15(OH)] (III) were synthesized from the reactions of dimolybdate with ninhydrin, benzil and phenanthraquinone, respectively. Complex II may also be prepared from dimolybdate and benzoin in acetonitrile-methanol solution, from which it co-crystallizes with the binuclear species [(C4H9)4N]2[Mo2O5(C6H5C(O)C(O)C6H5)2] · CH3CN · CH3OH (IV). Complexes I–III exhibit the tetranuclear core, previously described for the α-glyoxal derivatives [(C4H9)4N]3[(HCCH)Mo4O15X], where X = F or HCO2. The ligands may be formally described as diketals, formed by insertion of ligand carbonyl subunits into molybdenum-oxygen bonds. The structures I–III differ most dramatically in the identity and coordination mode of the anionic ligand X which occupies a position opposite the diketal moiety relative to the [Mo4O11]2+ central cage. Thus, I exhibits a doubly bridging methoxy group in this position, while II possesses a benzoate ligand with an unusual μ3-O,O′coordination mode. Complex III presents a hydroxy-group unsymmetrically bonded to three of the molybdenum centres. The stereochemical consequences of the various coordination modes are discussed. Crystal data: Compound I, monoclinic space group Pc, a = 24.888(2), b = 12.897(3), c = 24.900(3) Å, β = 101.94(2)°, Dcalc = 1.28 g cm−1 for Z = 4. Structure solution and refinement based on 8695 reflections with Fo 6σ(Fo) (Mo-Kα, λ = 0.71073 Å) converged at a conventional discrepancy factor of 0.060. Compound II, orthorhombic space group Pbca, a = 20.426(6), b = 26.916(6), c = 32.147(7) Å, V = 17673.2(20) Å3, Dcalc = 1.33 g cm−3 for Z = 8; 5224 reflections, R = 0.076. Compound III, tetragonal space group I41/a, a = b = 48.129(6), c = 13.057(2) Å, V = 30246.2(12) Å3, Dcalc = 1.35 g cm−3 for Z = 16; 5554 reflections, R = 0.053. Compound IV, orthorhombic space group Pnca, a = 16.097(4), b = 16.755(4), c = 25.986(7) Å, V = 7008.1(13) Å3, Z = 4, Dcalc = 1.18 g cm−3 ; 2944 reflections, R = 0.061.  相似文献   

11.
Exploratory synthesis in the K–In–Ge–As system has yielded the unusual layered compounds K8In8Ge5As17(1) and K5In5Ge5As14(2), both of which contain In–Ge–As layers with interleaved potassium ions, Ge–Ge bonds, InAs4tetrahedra, As–As bonds, and rows of Ge2As6dimers. Compound 1 has As3groups, while compound 2 has infinite As ribbons on both faces of each layer. Unlike compound 1, compound 2 has substitutional defects where indium partially occupies each of the three independent germanium sites in the ratio of 1:5 for In:Ge. This partial occupancy makes 2 an electron-precise compound. The Ge(In)–Ge(In) bond of 2 is longer than the Ge–Ge bond of 1, and this bond lengthening effect was confirmed by performing DFT-MO calculations on the model compounds H3Ge–GeH3and H3Ge–InH3. Possible implications of electron imprecise formulas determined by X-ray crystal structure determinations are discussed. Compound 1: space groupP21/cwitha=18.394 (8) Å,b=19.087 (7) Å,c=25.360 (3) Å,β=105.71 (2)°,V=8571 (4) Å3, andDcalcd=4.45g/cm3forZ=4. Refinement on 4455 reflections yieldedR(Rw)=6.8%(7.8%). Compound 2: space groupC2/mwitha=40.00 (1) Å,b=3.925 (2) Å,c=10.299 (3),β=99.97 (2)°,V=1592 (1) Å3, andDcalcd= 4.55g/cm3forZ=8. Refinement on 1206 reflections yieldedR(Rw)=5.6% (5.7%).  相似文献   

12.
A lithium Mo(V) diphosphate LiMoOP2O7 has been synthesized for the first time. It crystallizes in the space group P 21/n with a = 16.046(4) Å, b = 11.951(2) Å, c = 9.937(2) Å, β = 104.62(2)°. Its original structure is built up from P2O7 groups and MoO6 octahedra forming intersecting tunnels, where the Li+ cations are located with a tetrahedral coordination. This phase belongs to the IB class of Mo(V) phosphates defined by Costentin et al. The [MoP2O8] framework indeed consists of MoP2O11 units built up from one P2O7 group sharing two apices with the same MoO6 octahedron; the MoP2O11 units share their apices forming [MoP2O10]∞ chains running along a and b and the [ 04] direction. This phase exhibits a classical paramagnetic behavior, with 0 = -9.8 K and μ = 1.58 μB.  相似文献   

13.
Solid solution investigations in the CsHSO4–CsH2PO4system, carried out as part of an ongoing effort to elucidate the relationship between proton conduction, hydrogen bonding, and phase transitions, yielded the new compound Cs5(HSO4)3(H2PO4)2. Single-crystal X-ray diffraction methods revealed that Cs5(HSO4)3(H2PO4)2crystallizes in space groupC2/c(or possiblyCc), has lattice parametersa=34.066(19) Å,b=7.661(4) Å,c=9.158(6) Å, andβ=90.44(6)°, a unit cell volume of 2389.9(24) Å3, a density of 3.198 Mg m−3, and four formula units in the unit cell. Sixteen non-hydrogen atoms and five hydrogen sites were located in the asymmetric unit, the latter on the basis of geometric considerations rather than from Fourier difference maps. Refinement using anisotropic temperature factors for all non-hydrogen atoms and fixed isotropic temperature factors for all hydrogen atoms yielded residuals based onF2(weighted) andFvalues, respectively, of 0.0767 and 0.0340 for observed reflections [F2>2σ(F2)]. The structure contains layers of (CsH2XO4)2that alternate with layers of (CsHXO4)3, whereXis P or S. The arrangement of Cs, H, andXO4groups within the two types of layers is almost identical to that in the end-member compounds, CsH2PO4and CsHSO4-II, respectively. Although P and S each reside on two of the threeXatom sites in Cs5(HSO4)3(H2PO4)2, the number of protons in the structure appears fixed. In addition, the correlation of S–O and S–OH bond distances with O···O distances, where the latter represents the distance between two hydrogen-bonded oxygen atoms, was determined from a review of literature data.  相似文献   

14.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

15.
The new compound Hg2FeF5(OH)2 · H2O was prepared by evaporation of an aqueous 40% HF solution containing HgO and FeF3 in the stoichiometric ratio. The material is orthorhombic, space group Cmmm, with a = 7.505(1) Å, b = 11.823(3) Å, c = 3.941(2)Å, and Z = 2. The crystal structure was determined from single crystal intensity data obtained by means of an automated four-circle diffractometer and refined to the conventional values R = 0.0621 and Rw = 0.0566 for 451 observed reflections. The structure is characterized by infinite straight chains of FeF6 octahedra sharing trans F atoms in the direction [001]. These chains are linked by rutile-type chains of HgF4(OH)2 octahedra also running along [001]. Water molecules are statistically distributed on half of the 4i positions; they are off-centered in the channels parallel to [001] allowing O---H ··· F bonding. The structure is compared to that of HgFeF5 · 2H2O and to that of the hexagonal tungsten bronze.  相似文献   

16.
A new fluoride borate crystal, CdZn2KB2O6F, has been synthesized by flux-supported solid-state reaction. The crystal structure has been determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space group with a=5.0381(6) Å, b=5.0381(6) Å, c=15.1550(19) Å, α=90.00°, β=90.00°, γ=120.00°, Z=2. The crystal represents a new structure type in which ZnBO3 layers are connected through bridging fluorine and cadmium atoms alternately along the c-axis. K+ cations are filled in the intralayer open channels to balance charge. IR and Raman spectra further confirm the crystal structure. Photoluminescent measurement reveals that CdZn2KB2O6F exhibits blue fluorescence at room temperature in the solid-state.  相似文献   

17.
The crystal structures of Sr10Ga6O19 and Sr3Ga2O6 have been characterized using X-ray diffraction techniques. In the case of Sr10Ga6O19, the structure was determined from a single crystal diffraction data set collected at room conditions and refined to a final R index of 0.061 for 3471 observed reflections (I>2 σ(I)). The compound is monoclinic with space group C12/c1 (a=34.973(4) Å, b=7.934(1) Å, c=15.943(2) Å, β=103.55(1)°, V=4300.7(6) Å3, Z=8, Dcalc=4.94 g/cm3, μ(Mo)=32.04 mm−1) and can be classified as an oligogallate. It is the first example of an inorganic compound where six [TO4]-tetrahedra of only one chemical species occupying the tetrahedral centres are linked via bridging oxygen atoms to form [T6O19] groups. The hexamers are not linear, but highly puckered. Eleven symmetrically different Sr cations located in planes parallel (100) crosslink between the oligo-groups. They are coordinated by six to eight oxygen ligands. The structure of Sr3Ga2O6 has been refined from powder diffraction data using the Rietveld method (space group Pa , a=16.1049(1), V=4177.1(1) Å3, Z=24, Dcalc=4.75 g/cm3). The compound is isostructural with tricalcium aluminate and contains highly puckered, six-membered [Ga6O18]18− rings. The rings are linked by strontium cations having six to nine nearest oxygen neighbors.  相似文献   

18.
A new mixed Mo/Ni/Ti heteropoly compound [C5H5NH]5 [(NiOH)2Mo10O36(PO4)Ti2] has been hydrothermally synthesized and structurally determined by the single-crystal X-ray diffraction. Black prismatic crystals crystallize in the monoclinic system, space group P2(1)/n, a=11.2075(2), b=37.8328(5) c=13.0888(1) Å, β=101.4580(10)°, M=2276.13, V=5439.19(13) Å3, Z=4. Data were collected on a Siemens SMART CCD diffractometer at 293(2) K in the range of 1.68<θ<25.09° using the ω-scan technique (λ=0.71073 Å R(F)=0.0872 for 9621 reflections). The title compound contains a trimetal heteropolyanion polymer and “trans-titanium”-bridging pseudo-Keggin fragments linked to a chain.  相似文献   

19.
The structure of Ni0.85Mo6Te8 was refined from single-crystal X-ray diffraction data at room temperature. It is triclinic, space group
; 1619 reflections, 75 refined parameters, R = 0.031. The Mo atoms form distorted octahedral clusters (2.69 Å ≤ dintra[Mo---Mo] ≤ 2.81 Å; 3.58 Å < dinter[Mo---Mo]). The Ni atoms are disordered (site occupancy: 0.423(7); d[Ni---Ni] = 2.586(6) Å), and interact strongly with one Mo6 cluster (d[Ni---Mo] = 2.603(3) and 2.958(3) Å), and weakly with another (d[Ni---Mo] = 2.985(3) Å). The structure transforms at 1057(5) K into a rhombohedral modification (ahex = 10.457(2) Å, chex = 11.866(3) Å at 1073 K). Measurements on powders suggest metallic conductivity (5.1 × 10−4 Ω-cm at 293 K) and weakly temperature-dependent paramagnetism (110 × 10−6 emu/g at 100 K).  相似文献   

20.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号