首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
称取0.250 0 g样品,以2.5 mL盐酸、2.5 mL硝酸、2.5 mL氢氟酸和5 mL高氯酸为酸体系,设置消解温度为110~150℃;消解结束后,趁热加入盐酸(还原剂) 5 mL和10 g·L^(-1)三氯化铁溶液(掩蔽剂) 5 mL,再用水稀释至25 mL,得到待测样品溶液,采用氢化物发生原子荧光光谱法测定其中全硒的含量。结果显示:硒的质量浓度在20.00μg·L^(-1)以内与其对应的响应值呈线性关系,检出限(3s/k)为0.06μg·L^(-1);对岩石、土壤和水系沉积物国家标准物质进行验证,测定值的相对标准偏差(n=6)为0.68%~2.5%,回收率为94.0%~110%。  相似文献   

2.
提出了高压密闭消解-氢化物发生原子荧光光谱法测定农作物中硒含量的方法。粮食类样品(干样)去除杂物后,用水洗净,于60℃烘干;蔬菜类样品(鲜样)用水洗净,晾干,取可食用部分,制成匀浆。取上述样品0.5000 g置于高压密闭聚四氟乙烯(PTFE)内罐中,加入8 mL硝酸和2 mL 30%(质量分数)过氧化氢溶液,混匀过夜,于150℃密封消解4 h。冷却至室温后,于150℃赶酸至约1 mL,加入50%(体积分数)盐酸溶液5 mL,于150℃继续保持加热至溶液无色清亮并伴有白烟冒出。冷却后转移至10 mL容量瓶中,加入100 g·L^(-1)铁氰化钾溶液2.5 mL,用水定容。所得溶液在硒高性能空心阴极灯电流为80 mA,载气流量为300 mL·min^(-1),屏蔽气流量为700 mL·min^(-1)的条件下,采用氢化物发生原子荧光光谱法测定其中硒的含量。结果表明,硒的质量浓度在100μg·L^(-1)以内与对应的荧光强度呈线性关系,检出限(3s)为0.001 mg·kg^(-1)。方法用于国家标准物质分析,测定值的相对标准偏差(n=12)为2.3%~7.1%,相对误差为-6.7%~9.7%。方法还用于实际样品分析,所得测定结果与国家标准GB 5009.93-2017基本一致。  相似文献   

3.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

4.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L^(-1),检出限(3s)为6.75μg·L^(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

5.
取经清洗、粉碎并烘干的样品0.500 0g,用硝酸5mL及过氧化氢3mL,按程序升温模式微波消解。消解液于沸水浴中蒸发至约1mL,用水定容至50mL。取此溶液5.00mL依次加入0.2g·L^(-1) 5-Br-PADAP溶液2.0mL,氨性缓冲溶液(pH 9.0)3.0mL及100g·L^(-1) Triton X-114溶液3.0mL,加水定容至25mL,摇匀,使Cd^(2+)生成络合物,10min后加入辛醇1.0mL,涡旋混合1min,离心5min,吸出下层溶液,取出上层红色有机层,用乙醇定容至3mL,于540nm处用1cm比色皿测得其吸光度。镉的质量浓度在10.00mg·L^(-1)以内与吸光度呈线性关系,检出限(3s)为0.05mg·L^(-1)。加标回收率为93.3%~103%,测定值的相对标准偏差(n=6)小于5.0%。  相似文献   

6.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定深海沉积物中稀土总量的方法。将深海沉积物湿样烘干、压碎,剔除杂质,过筛后再次烘干。称取0.20 g样品于微波消解罐中,加入5.0 mL硝酸和2.0 mL氢氟酸,在程序升温条件下进行微波消解,结束后加入3.0 mL高氯酸进行赶酸,再加入50%(体积分数)硝酸溶液加热溶解样品中的盐类。冷却后,用水定容至50 mL。分取5.0 mL,用2%(体积分数)硝酸溶液定容至50 mL,在线加入10μg·L~(-1)铟内标溶液,按照优化的ICP-MS工作条件测定稀土氧化物含量。结果显示:15种稀土氧化物的质量浓度在一定范围内和其与内标元素铟响应值的比值呈线性关系,相关系数均为0.999 9,检出限(3s)为0.006 2~0.060 0μg·g~(-1)。对3种深海沉积物样品进行精密度、加标回收及方法比对试验,结果显示:所得测定值的相对标准偏差(n=11)为1.1%~2.9%,回收率为96.0%~104%,方法和国家标准方法GB/T 17417.1-2010所得的测定值基本一致。  相似文献   

7.
取土壤样品0.25 g,以10 mL体积比3∶1∶4的盐酸-硝酸-水混合液为消解液,于120℃石墨消解3 h,每30 min摇晃1次,冷却后,用水定容至25 mL。以2 g·L^(-1)氢氧化钾-0.2 g·L^(-1)硼氢化钾混合液为汞的还原剂,5 g·L^(-1)氢氧化钾-20 g·L^(-1)硼氢化钾混合液为硒、砷、锑的还原剂,以5%(体积分数)盐酸溶液为载流,采用原子荧光光谱法测定其中汞、砷、硒和锑的含量。结果表明,汞、砷、硒和锑的质量浓度在一定范围内与对应的原子荧光强度呈线性关系,检出限(3.143s)分别为0.0005,0.008,0.002,0.007 mg·kg^(-1),低于HJ 680-2013中的检出限。分析不同类型的土壤标准样品,测定值均在认定值的不确定度范围内,测定值的相对标准偏差(n=6)均小于15%。按标准加入法进行回收试验,回收率为94.0%~103%。  相似文献   

8.
提出了电感耦合等离子体原子发射光谱法测定铂铑合金中铑含量的方法。含铑(wRh≤40%)的铂铑合金称样0.1000 g,用盐酸-硝酸(3+1)溶液10 mL和氢氟酸(ρ=1.18 g·mL-1)0.5 mL于微波消解仪中消解完全。选择波长为343.489 nm的谱线作为测定铑的分析线。方法的检出限为0.029 mg·L-1。方法用于分析5个铂铑合金样品,测定值与国家标准方法测定值的相对误差在0.10%~0.40%之间,回收率在99.6%~101.0%之间。  相似文献   

9.
取粉碎后的水稻样品约0.3 g,按设定的消解程序进行全自动石墨消解,消解完毕后,用5%(体积分数)硝酸溶液定容至25 mL,采用电感耦合等离子体质谱法测定其中铬、镉、砷、铝、锶、铅、钡、铊的含量,内标法定量.结果表明,铬、镉、砷、铝、锶、铅、钡、铊标准曲线的线性范围均为0.01~8.0μg·L^(-1),检出限(3S/N)分别为0.006,0.011,0.009,0.017,0.009,0.008,0.012,0.018μg·kg^(-1).按照标准加入法进行回收试验,回收率为83.9%~105%,测定值的相对标准偏差(n=6)均小于5.0%.方法用于实际大米样品的测定,其中铝和钡元素的检出率为100%,检出量分别为0.49~1.02 mg·kg^(-1),0.019~0.071 mg·kg^(-1);镉和铅元素的检出率为33%,检出量分别为0.028~0.042,0.025~0.074 mg·kg^(-1);铬、砷、锶和铊均未检出.  相似文献   

10.
采用疏水性多孔滤膜对水样进行气液分离预处理,优化的预处理条件为:加入抗氧化剂除掉体系中带入的氧,设置加热温度为90℃,加热时间为60 min,50%(体积分数)磷酸溶液总量为20 mL(单次加酸量为2 mL)。采用亚甲基蓝分光光度法测定所得溶液中硫化物的含量。结果表明,硫化物标准曲线的线性范围为0.050~0.700 mg·L^(-1),检出限为0.003 mg·L^(-1)。方法用于测定有证标准物质,测定值在认定值的不确定度范围内,相对误差为-1.9%~-1.6%;按照标准加入法对实际样品进行回收试验,回收率为90.6%~95.0%,测定值的相对标准偏差(n=6)为2.5%~4.6%。  相似文献   

11.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

12.
样品(0.200 0g)于聚四氟乙烯烧杯中用硝酸10mL、氢氟酸5mL及高氯酸8mL低温溶解后蒸发至冒白烟,稍冷,再加高氯酸2mL并蒸发至冒白烟以除去氢氟酸,冷却,加入硝酸(1+5)溶液2mL溶解盐类,溶液移入100mL容量瓶中,加入100g·L-1 OP溶液2mL作为消除大量共存铝(Ⅲ)干扰的抑制剂,加水定容后按火焰原子吸收光谱条件测定试液中含锰量。锰的质量浓度在0.50mg·L-1以内与其吸光度呈线性关系,检出限(3s)为0.046mg·L-1。方法应用于硅铝合金样品的分析,锰测定值的相对标准偏差(n=5)在1.3%~1.9%之间。用标准加入法进行回收试验,测得回收率在102%~103%之间。  相似文献   

13.
纳米铜粉样品(0.5000g)用8mol·L^(-1)硝酸溶液20mL溶解,用水定容至100mL,从上述溶液中分取10.0mL用0.3mol·L^(-1)硝酸溶液定容至50 mL。采用电感耦合等离子体质谱法测定样品溶液中钴、银、锑、锡、钡、铅等6种微量元素。以115In和205 Tl作为内标对测定的基体效应进行了校正,采用测定元素同位素以消除和减少质谱干扰。6种元素的检出限(3s)为0.002~0.074μg·L^(-1)。加标回收率为94.0%~103%,测定值的相对标准偏差(n=11)均小于5.0%。  相似文献   

14.
提出了石墨炉原子吸收光谱法测定食盐中镉含量的方法。称取食盐样品0.5 g,用1%(体积分数,下同)硝酸溶液溶解并定容至50 mL,摇匀,配制成待测样品溶液。以1%硝酸溶液为溶剂,配制成含10 g·L^(-1)磷酸二氢铵和10 g·L^(-1)抗坏血酸的基体改进剂。测定时,采用自动进样器吸取1.0μL基体改进剂至20μL待测样品溶液中。优化后的石墨炉升温条件:干燥温度为120℃,灰化温度为350℃,原子化温度为700℃,净化温度为2 700℃。结果显示:镉的质量浓度在0.1~2.0μg·L^(-1)内与其对应的吸光度呈线性关系,检出限(3s/k)为0.001 mg·kg^(-1);对含不同质量分数镉的氯化钠加标溶液进行测定,测定值的相对标准偏差(n=6)均小于4.0%;对不同类型的食盐样品进行加标回收试验,镉回收率为92.0%~101%。  相似文献   

15.
采用自制四氧化三锰纳米粒子固相萃取-电感耦合等离子体质谱法测定蔬菜中铅和铜的含量。优化的固相萃取条件如下:(1)样品溶液的pH为4.0;(2)样品溶液的流量为1.0mL·min^(-1);(3)四氧化三锰纳米粒子的用量为50mg;(4)洗脱剂为3mol·L^(-1)盐酸溶液,用量为2mL;(5)样品溶液的体积为20mL。铅和铜的线性范围依次为0.01~5.0,0.02~1.0μg·L^(-1),检出限(3s/k)依次为4,8ng·L^(-1)。加标回收率为80.0%~108%,测定值的相对标准偏差(n=7)为0.94%~3.2%。  相似文献   

16.
样品经硝酸-氢氟酸-硫酸三酸消解后,以103 Rh为内标,采用电感耦合等离子体质谱法测定高岭土中的15种稀土元素。采用标准物质制备工作溶液绘制校正工作曲线消除质谱干扰,通过控制样品的稀释因子消除非质谱干扰。各元素的线性范围为0.20~200mg·kg^(-1),检出限在0.03~0.09 mg·kg^(-1)之间。方法用于分析岩石标准物质,测定值与认定值的相对误差在-6.7%~8.3%之间,相对标准偏差(n=5)在0.70%~5.9%之间。实际样品中15种稀土元素的测定值的相对标准偏差在3.8%~12%之间。  相似文献   

17.
0.500 0g样品经硝酸3mL、过氧化氢2mL消解后,采用电感耦合等离子体质谱法同时测定样品溶液中Na、Mg、Ca、Al、Cu、Zn、Fe、Mn、Se、Pb、Cd、As、Hg和Cr的含量。采用0.5%(体积分数)硝酸的基体酸度增强分析元素的信号强度;在两次测试之间用100μg·L-1 Au-5%(体积分数)硝酸溶液清洗仪器,降低Hg的吸附效应;利用甲烷碰撞动态反应池技术消除了分析过程中的质谱干扰,选择Sc、Y、In、Bi为内标元素校正基体效应。14种元素的质量浓度在一定范围内与信号强度呈线性关系,检出限(3s)在0.003~0.039μg·L^(-1)之间。方法用于分析国家标准物质GBW 10027,各元素测定值与认定值相符,测定值的相对标准偏差(n=6)在1.6%~14%之间。  相似文献   

18.
样品经硝酸-氢氟酸-硫酸三酸消解后,以103 Rh为内标,采用电感耦合等离子体质谱法测定高岭土中的15种稀土元素。采用标准物质制备工作溶液绘制校正工作曲线消除质谱干扰,通过控制样品的稀释因子消除非质谱干扰。各元素的线性范围为0.20~200mg·kg~(-1),检出限在0.03~0.09 mg·kg~(-1)之间。方法用于分析岩石标准物质,测定值与认定值的相对误差在-6.7%~8.3%之间,相对标准偏差(n=5)在0.70%~5.9%之间。实际样品中15种稀土元素的测定值的相对标准偏差在3.8%~12%之间。  相似文献   

19.
测定土壤中铍、锌、钼、铊、钛、锑等6种元素以硝酸-氢氟酸-高氯酸混合酸为消解体系,采用全自动消解法进行消解;测定土壤中钒、锰、钴、镍、铜、镉、钡、铅、铬等9种元素以硝酸-氢氟酸-盐酸混合酸为消解体系,采用微波消解法进行消解。以氩为内标元素校正土壤基体的雾化效率及电离效率。电感耦合等离子体原子发射光谱法(ICP-AES)采用多向观测模式,结合多重谱线拟合技术(MSF)校正光谱干扰,测定环境土壤中上述15种元素的含量,检出限为0.1~3.7 mg·kg~(-1)。按上述方法测定标准样品GSS~(-1)0和GSS~(-1)3,各元素的测定值与认定值吻合,相对标准偏差(n=11)为0.15%~2.6%。以吉林市某河岸土壤为实际测定样品,各元素的测定值与电感耦合等离子体质谱法(ICP-MS)的测定值一致,相对标准偏差(n=11)为1.6%~4.5%。  相似文献   

20.
由于头孢卡品酯的理化性质及其颗粒制剂包含很多难溶的辅料,为准确测定盐酸头孢卡品酯颗粒中镉、铅、砷、汞、钴、钒、镍、钼、铬等9种元素杂质的含量,尤其是挥发性元素汞,需要对样品进行络合和稳定性处理。以6 mL硝酸、1.5 mL盐酸、0.1 mL氢氟酸为消解酸,于180℃微波消解50 mg盐酸头孢卡品酯颗粒样品30 min;消解结束后,反复赶酸,再用体积比为0.1∶100的氢氟酸和盐酸-硝酸-水(体积比为1∶4∶95)的混合液定容至50 mL,采用电感耦合等离子体质谱法测定样品中9种元素杂质的含量,内标法定量。结果显示:9种元素杂质的质量浓度在一定范围内与其对应的响应值与内标响应值的比值呈线性关系,检出限(3s/k)为0.001~0.070μg·L^(-1);对6份同一加标样品溶液进行测定,9种元素杂质测定值的相对标准偏差为2.9%~5.1%;对实际样品进行加标回收试验,回收率为82.0%~104%。方法用于实际样品分析,9种元素杂质的含量均低于元素杂质指导原则规定的允许浓度限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号