首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the anisotropic thermal conductivity in pyrolytic graphite by thermoreflectance. A laser-heated circular spot on a surface perpendicular to the planes developed into an elliptical temperature distribution which was recorded by a raster scanning technique at modulation frequencies ranging from 600 Hz to 100 kHz. The ratio of in-plane and perpendicular thermal conductivity was determined by fitting the phase of the temperature data with an analytical model, and was found to decrease with increasing modulation frequency. Highest conductivity values were considerably smaller than previously published data based on steady-state measurements. The frequency dependence and additional features in the phase profiles at high frequencies are discussed in view of sample surface preparation and the local nature of the thermoreflectance measurement.  相似文献   

2.
Finite element analysis has been used to characterise an all-fibre antenna using circular core D-fibre. The optical D-fibre carrying a transversely poled piezoelectric polyvinylidene fluoride polymer coating was modelled by using three-dimensional stress analysis. The response of the D-fibre antenna was determined over a wide frequency range from 1 to 800 MHz. The modelling predicts that the electric-field-induced strains will cause a phase shift of 2.43×10−5 rad/(V/m) per metre at 5 MHz. At frequencies higher than 8 MHz, the optical response is dominated by radial resonances of the D-fibre/coating composite. Using the simulation results, an electric-field-induced phase shift of 7.35×10−5 rad/(V/m) per metre has been obtained. An increase in phase modulation sensitivity by a factor of three compared to conventional circular fibre has been achieved by utilising the unique properties of the D-fibre structure. The D-fibre antenna has potential applications in areas such as EMC testing and radio-over-fibre networks where it provides a convenient means of optically generating radio signals.  相似文献   

3.
Xu L  Fanguy JC  Soni K  Tao S 《Optics letters》2004,29(11):1191-1193
The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.  相似文献   

4.
Grainy titania coatings are prepared by microarc oxidation on pure titanium (TA2) substrates in a Na2SiO3NaF electrolytic solution. The coating thickness is measured by an optical microscope with a CCD camera. Scanning electron microscope (SEM) and x-ray diffraction (XRD) are employed to characterize the microstructure and phase composition of coatings. The results show that the coating thickness increases linearly as the treatment time increases. The coatings are mainly composed of anatase and rutile (TiO2). With the increase of treatment time, the predominant phase composition varies from anatase to rutile, which indicates that phase transformation of anatase into rutile occurs in the oxidizing process. Meanwhile, the size of grains existing on the coating surface increases and thus the surface becomes much coarser.  相似文献   

5.
A single frequency of surface plasmon polaritons (SPPs) will be converted to many discrete frequencies as they are transmitted through a metal-insulator-metal waveguide with its core width undergoing a harmonic oscillation. The process of the frequency conversion shares many key properties with the light diffraction in discrete optical systems. By employing the conception of optical diffraction management, we can control the discrete frequencies of SPPs such as the intensity and spectrum width by changing the initial phase of the waveguide oscillation. The study bridges the spatial discrete diffraction and frequency transition of SPP modes. Theoretical analysis based on the effective index method and coupled mode theory is provided in detail.  相似文献   

6.
The physiological basis of auditory frequency selectivity was investigated by recording the temporal response patterns of single cochlear-nerve fibers in the cat. The characteristic frequency and sharpness of tuning was determined for low-frequency cochlear-nerve fibers with two-tone signals whose frequency components were of equal amplitude and starting phase. The measures were compared with those obtained with sinusoidal signals. The two-tone characteristic frequency (2TCF) is defined as the arithmetic-center frequency at which the fiber is synchronized to both signal frequencies in equal measure. The 2TCF closely corresponds to the characteristic frequency as determined by the frequency threshold curve. Moreover, the 2TCF changes relatively little (2%-12%) over a 60-dB intensity range. The 2TCF generally shifts upward with increasing intensity for cochlear-nerve fibers tuned to frequencies below 1 kHz and shifts downward as a function of intensity for units with characteristic frequencies (CF's) above 1 kHz. The shifts in the 2TCF are considerably smaller than those observed with sinusoidal signals. Filter functions were derived from the synchronization pattern to the two-tone signal by varying the frequency of one of the components over the fiber's response area while maintaining the other component at the 2TCF. The frequency selectivity of the two-tone filter function was determined by dividing the vector strength to the variable frequency signal by the vector strength to the CF tone. The filter function was measured 10 dB down from the peak (2T Q 10 dB) and compared with the Q 10 dB of the frequency threshold curve. The correlation between the two measures of frequency selectivity was 0.72. The 2T Q 10 dB does change as a function of intensity. The magnitude and direction of the change is dependent on the sharpness of tuning at low and moderate sound-pressure levels (SPL's). The selectivity of the more sharply tuned fibers (2T Q 10 dB greater than 3) diminishes at intensities above 60 dB SPL. However, the broadening of selectivity is relatively small in comparison to discharge rate-based measures of selectivity. The selectivity of the more broadly tuned units remains unchanged or improves slightly at similar intensity levels. The present data indicate that the frequency selectivity and tuning of low-frequency cochlear-nerve fibers are relatively stable over a 60-dB range of SPL's when measured in terms of their temporal discharge properties.  相似文献   

7.
The behavior of the low frequency dielectric constant of NaNO2 as function of frequency and temperature is consistently correlated to the temperature behavior of the frequencies and linewidths of the phonons of B1 symmetry in the crystal. The frequency of the librational ‘soft’ mode closely related to the ferroelectric-paraelectric phase transition does not go to zero but tends to a hard core value at the transition temperature. The behavior of the dielectric constant as function of temperature and frequency is explained by assuming a dielectric relaxation mechanism proposed by Mason and not by Cochran's soft phonon model.  相似文献   

8.
The surface resistance of copper is studied in the region of classical and anomalous skin effect. The surface resistance gain (equal to the ratio of the surface resistances of copper at room and helium temperatures) is determined as a function of the electromagnetic field frequency. It is shown that the gain has an inverse power dependence on frequency. The frequencies at which the gain for copper is equal to 10 are determined. It is found that high-frequency power losses in the walls of the accelerating structure of the accelerator, which is prepared from nonsuperconducting metals at T ≥ 4.2 K, can be reduced by more than an order of magnitude as compared to an accelerating structure operating at room temperature. This confirms the possibility of developing a high-efficiency accelerator.  相似文献   

9.
宋艳丽 《物理学报》2006,55(12):6482-6487
为了描述复杂的噪声环境,考虑了一种具有频率结构的噪声——简谐速度噪声,包括它的产生、关联函数、功率谱以及作为热噪声时的频率特性所导致的一些行为.结果表明:在频谱空间中简谐速度噪声是一种带通噪声,存在一个峰值频率,且噪声带宽由参量Γ控制.当简谐势中的一个布朗粒子受热简谐速度噪声驱动时,粒子能量极大值出现在两种频率相等的情况下.这表明噪声和势场的频率之间存在动力学共振,决定着粒子能量的大小. 关键词: 简谐噪声 简谐速度噪声 功率谱 频率共振  相似文献   

10.
Active (lock-in and pulsed) thermography technique is used to quantify defect features in specimens of glass fiber reinforced polymer, high density rubber, low density rubber and aluminum bonded low density rubber with artificially produced defects. The relationship between phase contrast and thermal contrast with defect features are examined. Using lock-in approach, the optimal frequencies for different specimens are determined experimentally. It is observed that with increasing defect depth, the phase contrast increases while the thermal contrast decreases. Defects with radius to depth ratio greater than 1.0 are found to be discernible. The phase difference between sound and defective region as a function of square root of excitation frequency for glass fiber reinforced polymer specimen is found to be in good agreement with the predictions of Bennet and Patty model [1]. Further, using pulsed thermography, the defects depth could be measured accurately for glass fiber reinforced polymer specimen from the thermal contrast using the analytical approach of Balageas et al. [2].  相似文献   

11.
The phase versus frequency function of the distortion product otoacoustic emission (DPOAE) at 2f(1) - f(2) is approximately invariant at frequencies above 1.5 kHz in human subjects when recorded with a constant f(2)/f(1). However, a secular break from this invariance has been observed at lower frequencies where the phase-gradient becomes markedly steeper. Apical DPOAEs, such as 2f(1)?- f(2), are known to contain contributions from multiple sources. This experiment asked whether the phase behavior of the ear canal DPOAE at low frequencies is driven by the phase of the component from the distortion product (DP) region at 2f(1)?- f(2), which exhibits rapid phase accumulation. Placing a suppressor tone close in the frequency to 2f(1)?- f(2) reduced the contribution of this component to the ear canal DPOAE in normal-hearing adult human ears. When the contribution of this component was reduced, the phase behavior of the ear canal DPOAE was not altered, suggesting that the breaking from DPOAE phase invariance at low frequencies is an outcome of apical-basal differences in cochlear mechanics. The deviation from DPOAE phase invariance appears to be a manifestation of the breaking from approximate scaling symmetry in the human cochlear apex.  相似文献   

12.
Ferroelectric polyvinylidenefluoride-trifluoroethylene copolymer films with different thicknesses are prepared by a solvent-cast technique, by spin coating, and by a horizontal Langmuir–Blodgett technique respectively. The frequency dependent dielectric permittivity of these films is investigated with varying sample thickness and varying temperature in the ferroelectric as well as in the paraelectric phase. A dielectric relaxation according to a Vogel–Tamman–Fulcher law of the relaxation times is found in all samples. However, the relaxation times extracted from the dielectric permittivity in the frequency range are not consistent with the relaxation times determined from the temperature range. An explanation for this behavior is given by a temperature dependent distribution of relaxation times. Additionally, in thin samples a second relaxation with a weak anomalous temperature dependence, i.e. an increasing relaxation time with increasing temperature, is observed at high frequencies. Detailed investigations show that this behavior can be attributed to an electrode effect.  相似文献   

13.
We measured disparity threshold for identifying the depth direction as a function of spatial frequency with various temporal frequencies and stimulus contrasts using drifting gratings. The results showed that disparity threshold depended little on temporal frequency with the exception of high temporal frequencies (≥ 10Hz) independently of stimulus contrast. Contrary to temporal frequency, contrast substantially influenced spatial frequency characteristics. The disparity threshold was approximately constant with change in spatial frequency with slight increase at high spatial frequencies for contrasts higher than 0.2 when the threshold is expressed by phase difference between the left and right eye images (phase disparity). The phase disparity threshold had a negative peak at a spatial frequency between 1 and 5c/deg (band-pass) for contrasts lower than 0.2. We discuss possible differences in the underlying mechanisms to determine disparity threshold below and above temporal frequency of 10 Hz.  相似文献   

14.
The lateral modification of the thermal conductivity of a NiTi sample have been measured by scanning thermal microscope using the 3ω-technique. Squares of lateral length in the micrometer range had been drawn in a polycrystalline NiTi sample by a focussed ion beam of Ga. Amplitude and phase of the 3ω-signal have been recorded at some selected positions as a function of frequency between 10 Hz and 10 KHz and as a function of position at selected modulation frequencies. The 3ω-signals are modified inside the squares as well as the border lines and also change when the temperature is increased above the martensite-austenite transition temperature.  相似文献   

15.
The Timoshenko beam theory, including the effects of rotary inertia and shear deformation, is used to analyze the resonant frequency of lateral vibration of scanning near-field optical microscope (SNOM) tapered probe with a laser-induced thermal effect. In the analysis, the thermal effect can be considered as an axial force and is dependent of temperature distribution of the probe. The Rayleigh–Ritz method is used to solve the vibration problem of the probe. According to the analysis, the frequencies of the first three vibration modes increase when the thermal effect is taken into account. The effects of shear deformation and rotary inertia on the frequency ratio of a Timoshenko beam to an Euler beam increase when the mode number increases and the contact stiffness decreases. In addition, the frequency of mode 1 increases with increasing taper angle and coating thickness of the probe. Comparison of the frequency of a SNOM probe coated with Al, Ag, or Au, the highest is with Al coating, and the lowest is with Au coating.  相似文献   

16.
The transfer function of a fiber-optic hydrophone (FOH) is computed for various fiber core radii. The hydrophone is modeled as a rigid disk, with plane waves impinging at normal or oblique incidence. The total sound field is written as the sum of the incident field and the field diffracted from the hydrophone. The diffracted field is approximated by the field generated by a vibrating planar piston in an infinite rigid baffle. For normal incidence and a pointlike fiber core, an analytical solution is presented. For finite fiber core radii, and for oblique incidence, the transfer functions are computed numerically. The calculated transfer functions exhibit an oscillatory frequency dependency that is most pronounced for small fiber cores. The solution for a core radius of 2.5 microm can be very well approximated by the analytical solution for a pointlike core at frequencies of up to 30 MHz. The results for normal incidence can be directly employed to deconvolute ultrasonic pressure signals measured with an FOH. From the transfer functions for oblique incidence, the angular response of the hydrophone is calculated. The angular response obtained here differs significantly from the model commonly used for piezoelectric hydrophones. The effective hydrophone radius derived from the angular response shows a strong frequency dependency. For low frequencies, it is found to be larger than the outer fiber radius, whereas it generally lies between the outer radius and the fiber core radius for frequencies above 10 MHz.  相似文献   

17.
This paper deals with the effects of ultrasonic irradiation on electroless copper coating i.e. metallic deposition on non-conductive substrates and on electroplating on metallic substrates. Ultrasonic irradiation was both applied during activation (surface preparation for the electroless coating) and during plating steps in both cases. Several parameters were monitored, such as plating rates, practical adhesion, hardness, internal stress versus varying acoustic powers and frequencies. Optimum conditions for irradiation time, frequency and power were determined for each step. It appears clearly that ultrasound use affects deposit properties. Then, changes in the coating mechanisms can be discussed, and several parameters will be explored in this paper, to explain enhancement of deposit properties: increase in catalyst specific area, stirring dependence, surface energy evolution, dihydrogen desorption, structure of coating.  相似文献   

18.
Ammonia chemisorption on Pt(111) has been studied with high resolution electron energy loss spectroscopy (EELS), combined with thermal desorption spectroscopy (TDS). We detect two distinct molecular states of ammonia at different coverages. Near saturation monolayer coverage, ammonia is weakly chemisorbed (ΔHads ~ 9 kcal mol?1) and coordinated to the metal surface via the nitrogen atom. The vibrational frequencies are shifted from the gas phase values, but not as strongly perturbed as in stable platinum-ammine complexes. Below 40% saturation coverage, a new molecular ammonia state is detected, which has a distinct vibrational and thermal desorption spectrum. This state has a considerably reduced ν(PtN) intensity, and the other frequencies are closer to those in solid ammonia, indicating a weaker interaction with the Pt surface. The thermal desorption spectrum of this lower coverage state is broad, from 160 to 450 K, and coverage dependent. Conversion between the two molecular states appears to be only a function of coverage. We propose that the two molecular states have different adsorption sites, and convert from one form to the other as the coverage is changed. No evidence is found for significant dissociation of ammonia on the Pt surface. At very low temperatures (100 K), solid ammonia multilayers may be grown.  相似文献   

19.
采用油水两相溶液体系,借助于双亲聚合物包覆实现了CdSe/ZnSe核壳结构量子点自油相到水相的相转移。油水两相中的聚合物包覆与已经报道的均相溶液中聚合物包覆量子点的方法不同,包覆过程在油水两相界面处完成,有效地减少了聚合物缠绕引起的量子点团聚,实现了聚合物对量子点的无团聚单分散包覆。透射电镜和激光粒度分析仪对聚合物包覆量子点的表征结果表明获得的水溶性量子点具有良好的分散性,均一的水力尺寸。吸收和发射光谱表明聚合物包覆过程对量子点的发射峰位和峰型没有引起明显的改变,维持了较高的量子产率。通过荧光微区成像技术成功实现了对人IgG蛋白的特异性检测,证实这种方法获得的聚合物包覆量子点具有较好的与生物分子偶联的功能化基团,适合于生物学标记应用。  相似文献   

20.
StudyoftheThermalDiffusivityofOpticalCoatingbyPhoto-thermalDeformationTechnique¥ZHOUDongping;FANZhengxiu(ShanghaiInstituteofO...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号