首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to different dilation matrices and symmetry groups are constructed and analyzed.

Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g., the Powell-Sabin scheme). We make some of these connections precise. A spline connection allows us to determine critical Hölder regularity in a trivial way (as opposed to the case of general refinable functions, whose critical Hölder regularity exponents are often difficult to compute).

While it is often mentioned in published articles that ``refinable functions are important for subdivision surfaces in CAGD applications", it is rather unclear whether an arbitrary refinable function vector can be meaningfully applied to build free-form subdivision surfaces. The bivariate symmetric refinable Hermite interpolants constructed in this article, along with algorithmic developments elsewhere, give an application of vector refinability to subdivision surfaces. We briefly discuss several potential advantages offered by such Hermite subdivision surfaces.

  相似文献   


2.
The classical explicit fourth‐order Numerov‐type method is considered. The equations of condition for deriving the corresponding interpolants are given. Then using a local error estimation, we may construct a stable variable step scheme. Applying this new implementation in a set of problems, we get very pleasant results.  相似文献   

3.
Approximation properties of divergence-free vector fields by global and local solenoidal bases are studied. A comparison between interpolants generated with radial kernels and multivariate polynomials is presented. Numerical results show higher rates of convergence for derivatives of the vector field being approximated in directions enforced by the divergence operator when a rectangular grid is used. We also compute the growth of Lebesgue constants for uniform and clustered nodes and study the flat limit of divergence-free interpolants based on radial kernels. Numerical results are presented for two- and three-dimensional vector fields.  相似文献   

4.
用构造最优局部逼近空间的方法对Lagrange型四边形单位分解有限元法进行了最优误差分析.单位分解取Lagrange型四边形上的标准双线性基函数,构造了一个特殊的局部多项式逼近空间,给出了具有2阶再生性的Lagrange型四边形单位分解有限元插值格式,从而得到了高于局部逼近阶的最优插值误差.  相似文献   

5.
1. IntroductionThe smooth interpolation on a triangulation of a planar region is of great importancein most applied areas) such as computation of finite element method, computer aided(geometric) design and scattered data processing.Let A be a triangulation of a polygonal domain fi C RZ and Ac, al and aZ the setso f venices, edges and triangles in a respectively. Usually the triangulation in practiceis formed by a mass of scattered nodes that, covered by the region fi, are carryingsimilar typ…  相似文献   

6.
In this paper, we describe a recursive method for computing interpolants defined in a space spanned by a finite number of continuous functions in RdRd. We apply this method to construct several interpolants such as spline interpolants, tensor product interpolants and multivariate polynomial interpolants. We also give a simple algorithm for solving a multivariate polynomial interpolation problem and constructing the minimal interpolation space for a given finite set of interpolation points.  相似文献   

7.
The four-point interpolatory subdivision scheme of Dubuc and its generalizations to irregularly spaced data studied by Warren and by Daubechies, Guskov, and Sweldens are based on fitting cubic polynomials locally. In this paper, we analyze the convergence of the scheme by viewing the limit function as the limit of piecewise cubic functions arising from the scheme. This allows us to recover the regularity results of Daubechies et al. in a simpler way and to obtain the approximation order of the scheme and its first derivative.  相似文献   

8.
In this paper we first revisit a classical problem of computing variational splines. We propose to compute local variational splines in the sense that they are interpolatory splines which minimize the energy norm over a subinterval. We shall show that the error between local and global variational spline interpolants decays exponentially over a fixed subinterval as the support of the local variational spline increases. By piecing together these locally defined splines, one can obtain a very good C0 approximation of the global variational spline. Finally we generalize this idea to approximate global tensor product B-spline interpolatory surfaces.  相似文献   

9.
The classical four‐stage family of explicit sixth‐order Numerov‐type method is considered. We provide two kinds of interpolants: (a) a three‐step interpolation based on all available data at mesh points and (b) a local interpolant (ie, two steps) that is constructed after solving scaled equations of condition. These latter equations are explained and provided here. Applying these interpolants in a set of tests, we conclude that they produce global errors of the same magnitude with the underlying method.  相似文献   

10.
In this paper we discuss methods for investigating the convergence of multivariate vector subdivision schemes and the regularity of the associated limit functions. Specifically, we consider difference vector subdivision schemes whose restricted contractivity determines the convergence of the original scheme and describes the connection between the regularity of the limit functions of the difference subdivision scheme and the original subdivision scheme.  相似文献   

11.
In this paper, we prove the local well-posedness of the viscous surface wave equation in low regularity Sobolev spaces. The key points are to establish several new Stokes estimates depending only on the optimal boundary regularity and to construct a new iteration scheme on a known moving domain. Our method could be applied to some other fluid models with free boundaries.  相似文献   

12.
向量值有理插值存在性的一种判别方法   总被引:3,自引:1,他引:2  
对于向量值有理插值的计算,目前已经有多种求解算法.但其存在性的判别方法及其证明在现有的文献中还没有见到.这里利用标量有理插值函数插值存在性的思想,引入Newton基函数,给出并证明了向量值有理插值存在性的一种判别方法.同时给出有理插值函数的分子和分母的显式表达式,最后的实例说明了它的有效性.  相似文献   

13.
   Abstract. We propose C 1 Hermite interpolants generated by the general subdivision scheme introduced by Merrien [17] and satisfying monotonicity or convexity constraints. For arbitrary values and slopes of a given function f at the end-points of a bounded interval, which are compatible with the contraints, the given algorithms construct shape-preserving interpolants. Moreover, these algorithms are quite simple and fast as well as adapted to CAGD. We also give error estimates in the case of interpolation of smooth functions.  相似文献   

14.
1.IntroductionThepurposeofthepaperistocharacterizeacertainclassofCIdiscreteinterpolalltsdefinedovertetrahedrawithonlyCIdatarequired.Weassumethatapolyhedraldomaininthree-spaceorasetof3Dscattereddatahavebeentessellatedintotetrahedrawithanytwoofwhichshareonlyoneface.Asforthispreprocessingstage,onemadreferto[2]and[3]andhereweomitit.Inthepaperlweonlydescribethecharacterizationofaninterpolantoverasingletetrahedronfortheinterpolantshavethesameform.Nowwebeginourpaperwithsomeconceptionsandnotations.…  相似文献   

15.
Regularity conditions for an improper prior function to be regarded as a virtually proper prior density are proposed, and their implications are discussed. The two regularity conditions require that a prior function is defined as a limit of a sequence of proper prior densities and also that the induced posterior density is derived as a smooth limit of the sequence of corresponding posterior densities. This approach is compared with the assumption of a degenerated prior density at an unknown point, which is familiar in the empirical Bayes method. The comparison study extends also to the assumption of an improper prior function discussed separately from any proper prior density. Properties and examples are presented to claim potential usefulness of the proposed notion.  相似文献   

16.
The averaging method is one of the most powerful methods used to analyse differential equations appearing in the study of nonlinear problems. The idea behind the averaging method is to replace the original equation by an averaged equation with simple structure and close solutions. A large number of practical problems lead to differential equations with discontinuous right-hand sides. In a rigorous theory of such systems, developed by Filippov, solutions of a differential equation with discontinuous right-hand side are regarded as being solutions to a special differential inclusion with upper semi-continuous right-hand side. The averaging method was studied for such inclusions by many authors using different and rather restrictive conditions on the regularity of the averaged inclusion. In this paper we prove natural extensions of Bogolyubov’s first theorem and the Samoilenko-Stanzhitskii theorem to differential inclusions with an upper semi-continuous right-hand side. We prove that the solution set of the original differential inclusion is contained in a neighbourhood of the solution set of the averaged one. The extension of Bogolyubov’s theorem concerns finite time intervals, while the extension of the Samoilenko-Stanzhitskii theorem deals with solutions defined on the infinite interval. The averaged inclusion is defined as a special upper limit and no additional condition on its regularity is required.  相似文献   

17.
In this paper, we address the problem of curve and surface reconstruction from sets of points. We introduce regular interpolants, which are polygonal approximations of curves and surfaces satisfying a new regularity condition. This new condition, which is an extension of the popular notion of r-sampling to the practical case of discrete shapes, seems much more realistic than previously proposed conditions based on properties of the underlying continuous shapes. Indeed, contrary to previous sampling criteria, our regularity condition can be checked on the basis of the samples alone and can be turned into a provably correct curve and surface reconstruction algorithm. Our reconstruction methods can also be applied to non-regular and unorganized point sets, revealing a larger part of the inner structure of such point sets than past approaches. Several real-size reconstruction examples validate the new method.  相似文献   

18.
We investigate the use of piecewise rational interpolants ofDelbourgo and Gregory in an important and widely occurring application.We propose the following algorithm for visually pleasing plotsof the solution of an ordinary differential equation (ODE):use piecewise cubic Hermite interpolation where it can be shownto preserve shape (monotonicity and/or convexity) and also wherethere is no shape to preserve, otherwise use the appropriateconvex or monotone piecewise rational interpolant. Bounds arederived which enable efficient plotting of the rational interpolants.This scheme should be useful in any context where both solutionand derivative of a function are available as data.  相似文献   

19.
Abstract. We propose C 1 Hermite interpolants generated by the general subdivision scheme introduced by Merrien [17] and satisfying monotonicity or convexity constraints. For arbitrary values and slopes of a given function f at the end-points of a bounded interval, which are compatible with the contraints, the given algorithms construct shape-preserving interpolants. Moreover, these algorithms are quite simple and fast as well as adapted to CAGD. We also give error estimates in the case of interpolation of smooth functions.  相似文献   

20.
Summary. In this paper, we provide stability and convergence analysis for a class of finite difference schemes for unsteady incompressible Navier-Stokes equations in vorticity-stream function formulation. The no-slip boundary condition for the velocity is converted into local vorticity boundary conditions. Thom's formula, Wilkes' formula, or other local formulas in the earlier literature can be used in the second order method; while high order formulas, such as Briley's formula, can be used in the fourth order compact difference scheme proposed by E and Liu. The stability analysis of these long-stencil formulas cannot be directly derived from straightforward manipulations since more than one interior point is involved in the formula. The main idea of the stability analysis is to control local terms by global quantities via discrete elliptic regularity for stream function. We choose to analyze the second order scheme with Wilkes' formula in detail. In this case, we can avoid the complicated technique necessitated by the Strang-type high order expansions. As a consequence, our analysis results in almost optimal regularity assumption for the exact solution. The above methodology is very general. We also give a detailed analysis for the fourth order scheme using a 1-D Stokes model. Received December 10, 1999 / Revised version received November 5, 2000 / Published online August 17, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号