首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quest to understand the origin of chirality in biological systems has evoked an intense search for nonlinear effects in catalysis and pathways to amplify slight enantiomeric excesses in racemates to give optically pure molecules. The amplification of chirality in polymeric systems as a result of cooperative processes has been intensely investigated. Ten years ago, this effect was shown for the first time in noncovalent dynamic supramolecular systems. Since then, it has become clear that a subtle interplay of noncovalent interactions such as hydrogen-bonding, pi-pi stacking, and hydrophobic interactions is also sufficient to observe amplification of chirality in small molecules. Here we summarize the results obtained over the past decade and the general guidelines we can deduce from them. Predicting amplification of chirality is still impossible, but it appears to be a balance between different types of interactions, the formation of an intrinsically chiral object, and cooperative aggregation processes.  相似文献   

2.
The amplification of chirality in hydrogen-bonded tetrarosette assemblies under thermodynamic equilibrium is described. The extent of the chiral amplification obtained by means of "sergeants-and-soldiers" experiments depends only on the structure of the assembly and it is independent of the methodology used for the formation of the tetrarosette assemblies. The difference in free energy (deltaG(o)(M/P)) between the M- and P-diastereomeric helices is up to 40 times higher than for double rosette assemblies.  相似文献   

3.
Hierarchical chiral structures made up of dendritic oligo(L- or D-glutamic acid) moieties of folic acid derivatives induce supramolecular chirality in the self-assembled columnar structures of the folic acids. These folic acids self-assemble through the intermolecular hydrogen bonds of the pterin rings to form disklike tetramers. In the neat states, the stacked tetramers form thermotropic hexagonal columnar phases over wide temperature ranges, including room temperature. Addition of alkali metal salts induces chirality in the columnar phases. In dilute solution states in a relatively polar solvent (chloroform), the folic acid derivatives form non-chiral, self-assembled structures. In the presence of sodium triflate, the folic acid forms chiral columnar assemblies through the oligo(L-glutamic acid) moiety, similar to those formed in the liquid-crystalline (LC) states. The enantiomer of the folic acid induces columnar assemblies with reversed helicity. In the case of the diastereomer, no induced helicity is observed. Application of an apolar solvent (dodecane) drives the folic acid derivatives to form chiral assemblies in the absence of ions. In this case, lipophilic interactions promote nanophase segregation, which enhances the formation of chiral columns. Interestingly, the chiral supramolecular structure of the diastereomer induces the most intense circular dichroism. In both cases, the molecular chirality in the oligo(glutamate) moieties yields supramolecular chirality of the folic acids that self-assemble through cooperative molecular interactions.  相似文献   

4.
5.
6.
7.
8.
9.
The supramolecular chirality of 1D ladder-type hydrogen-bond networks composed of primary ammonium carboxylates was determined based on topological considerations. Chirality in such networks is based on the absolute configuration of the primary ammonium cation, which arises from discrimination between the two oxygen atoms of the carboxylate anion. The configurations of the cations and anions generate topological diversity in the networks, which are classified into six subgroups. In the Cambridge Structural Database, salts based on ladder type 1 constitute over 70 % of salts with a 1D-ladder-type network. Ladder type 1, based on a 2(1)-axis, is not superimposable on its mirror image, which leads to the first definition of right- or left-handedness of 2(1)-helicity on the basis of supramolecular tilt chirality. Helical assemblies of 2(1)-type with triaxial chirality can be assembled in various ways to yield chiral bundles and crystals. On the basis of these considerations, we constructed clay mimic structures with several bundle patterns by connecting the hydrogen-bond networks by using bifunctional molecules. These results open up the possibility of in-depth crystal engineering based on hydrogen-bond topology.  相似文献   

10.
There have been numerous theoretical and experimental investigations examining NMR parameters related to non-amino N-H...N H-bonded moieties in both biological and chemical contexts. In contrast, little information on the geometry dependence of NMR parameters related to the biologically important H-bond donor amino group is available. Herein, the geometric dependencies of the one-bond amino N-H spin-spin coupling constants [(1)J(NH)] in the cyanamide monomer and dimer have been computed with B3LYP and the aug-cc-pVTZ-su0 basis set. In an isolated planar cyanamide molecule, the |(1)J(NH)| couplings were found to increase as the N-H bond lengthened. In contrast, in the planar cyanamide dimer the size of the H-bonded amino N-H coupling (|(1)J(N(d)H(d))|) decreased with increasing N(d)H(d) bond length. The |(1)J(N(d)H(d))| coupling was larger than the |(1)J(N(d)H(free))| coupling for N(d)H(d) distances up to 1.18 A (for a fixed N(d)H(free) distance of 1.006 A). Hence, the decrease of |(1)J(NH)| with increasing N-H distance, as well as the larger value of |(1)J(N(d)H(d))| compared to |(1)J(N(d)H(free))|, were only observed for situations where the amino group is involved in an H-bonding interaction. This is attributed to electron redistribution induced by the presence of the second cyanamide molecule. Similar electron-redistribution effects are thought to be responsible for the observed distance dependence of computed (1)J(NH) couplings of H-bonded amino groups in near-planar G-quartet structures. Here, the |(1)J(NH)| couplings of the amino N-H bonds decreased with increasing N-H bond length whereas the |(1)J(N(d)H(d))| couplings are approximately 7 Hz larger than the |(1)J(N(d)H(free))| couplings, despite the longer N(d)-H(d) bond length.  相似文献   

11.
12.
13.
14.
A melamine derivative has been covalently equipped with two oligo(para-phenylenevinylene) (OPV) chromophores. This procedure yields a bifunctional molecule with two hydrogen-bonding arrays available for complementary binding to perylene bisimide derivatives. Depending on the solvent, hydrogen-bonded trimers, tetramers, and dimers on a graphite surface are observed for pure OPV-melamine by using scanning tunneling microscopy (STM). Upon the addition of perylene bisimide, linear tapes of perylene bisimide, 12-membered rosettes that consist of alternating hydrogen-bonded OPV-melamine and perylene bisimide moieties are visualized. These results provide direct evidence for the possible modes of hydrogen bonding within a supramolecular co-assembly in solution. Subsequently, the optical properties of pure OPV-melamine and co-assemblies with a perylene bisimide derivative were characterized in solution. In an apolar solvent, OPV-melamine self-assembles into chiral superstructures. Disassembly into molecularly dissolved species is reversibly controlled by concentration and temperature. Complementary hydrogen bonding to a perylene bisimide derivative in an apolar solvent yields multicomponent, pi-stacked dye assemblies of enhanced stability that are characterized by fluorescence quenching of the constituent chromophores. Titration experiments reveal that a mixture of hydrogen-bonded oligomers is present in solution, rather than a single discrete assembly. The solution experiments are consistent with the STM results, which revealed various supramolecular assemblies. Our system is likely not to be optimally programmed to obtain a discrete co-assembled structure in quantitative yield.  相似文献   

15.
16.
17.
Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using Land D-gelators in xerogels respectively, and...  相似文献   

18.
19.
20.
Stability and structure of homo- and heterochiral protonated serine (Ser) dimers were investigated by a combination of mass spectrometry and ab initio quantum chemical calculations. This established that the energy difference between the most stable homo- and heterochiral forms is very small: tandem mass spectrometry with Cooks' kinetic method yielded a negligible difference in Gibbs free energy (0.2+/-0.2 kJ mol(-1)). The various isomeric forms of (Ser)2 H+ and their energetics were determined by extensive electronic-structure calculations, which yielded homo- and heterochiral forms of the isomers with distinctly different relative energies. The most stable homochiral isomer is stabilized by two hydrogen bonds and is far more stable than any other homochiral isomer. The most stable heterochiral isomer has completely different features, and it is characterized by a salt-bridge structure. This clearly shows that salt-bridge structures do exist in the gas phase even in comparatively small molecules and in the absence of particularly basic or acidic functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号