首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preferential solvation of ternary systems of polymer with mixed solvents is characterized by the λ′ parameter which depends on the thermodynamic properties of the system and also on some molecular parameters of the polymer (molecular weight, index of polydispersity, index of branching etc.). The dependence of λ′ on molecular parameters can be illustrated by a unique relation between the λ′ parameter and the intrinsic viscosity [η]:λ′[η] = λ [η] + a′ +. This representation is verified for polystyrene and polymethyl methacrylate in several mixed solvents.  相似文献   

2.
The solubilities of sulfamethoxydiazine in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform have been determined in the range 293.15–323.15 K by a static equilibrium method. The calculated results show that the correlation of the Apelblat equation for measured systems has less deviation than that of the λh equation. The positive Δsol H and Δsol S for each system revealed that sulfamethoxydiazine being dissolved in each solvent was an entropy-driven process.  相似文献   

3.
The equilibrium solubility of acetaminophen in methanol + water binary mixtures at 298.15 K was determined and correlated with the JouybanAcree model. Preferential solvation parameters by methanol (δx1,3) were derived from their thermodynamic solution properties by means of the inverse KirkwoodBuff integrals method. δx1,3 values are negative in water-rich mixtures but positive in compositions from 0.32 in mole fraction of methanol to pure methanol. It is conjecturable that in the former case, the hydrophobic hydration around non-polar groups plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behavior of this cosolvent.  相似文献   

4.
Thermodynamic functions Δr H, Δr G, and TΔr S of the complex formation between Cu2+ and triglycine in water–ethanol solutions are calculated on the basis of calorimetric data. It is found that raising the concentration of EtOH results in a monotonic increase in the exothermic effect of [CuHL]2+ complex formation due to the weakening of triglycine solvation with the mutual compensation of ion solvation contributions. The enthalpy of [CuL]+ complex formation has an exothermic maximum at 0.1?0.3 molar fractions of EtOH due to competition between the solvation contributions from ions and ligands.  相似文献   

5.
The mole fraction solubility of phenacetin (PNC) in methanol + water binary solvent mixtures at 298.15 K was determined along with density of the saturated solutions. All these solubility values were correlated with the Jouyban–Acree model. Preferential solvation parameters of PNC by methanol (δx1,3) were derived from their thermodynamic solution properties using the inverse Kirkwood–Buff integrals (IKBI) method. δx1,3 values are negative in water-rich mixtures but positive in methanol mole fraction of >0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of PNC plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.  相似文献   

6.
1H-, 2H- and 13C-NMR spectra have been used to test the Ni2+ solvation shell composition in the 1.1 molal methanol solution of NiCl2. It has been confirmed that Cl? anion takes part in the nearest environment of Ni2+ cation at all the temperatures investigated. Using 2H-NMR allowed us to detect for the first time OD-signal of methanol in the primary solvation shell of Ni2+ cation. Both 2H- and 13C-NMR spectra show that the composition of the cation solvation shell becomes more complicated at temperatures lower than 220?K.  相似文献   

7.
The better selectivity of Am3+ over Eu3+ ion with N‐based CyMe4‐BTPhen compared to CyMe4‐BTBP for experimentally observed [ML2(NO3)]2+ complexes was demonstrated using scalar relativistic DFT in conjunction with Born‐Haber thermodynamic cycle and COSMO solvation model. The calculated free energy of extraction, ΔGext reveals strong dependence on the hydration free energies of Am3+ and Eu3+ ions and week dependence to the difference in Gibbs free energy of solvation of the ligand or metal‐ligand complexes. Further, for the first time, we have computed the effect of co‐anion species ([M(NO3)5]2–) on ΔGext of Am3+ and Eu3+ ions with CyMe4‐BTPhen and CyMe4‐BTBP, which adds a positive contribution and thus reduces the ΔGext. The calculated values of ΔΔΔGext (= ΔΔGext,L1 – ΔΔGext,L2, ΔΔGext = ΔGext,M1 – ΔGext,M2) can be used to avoid the very sensitive metal ion solvation energy, effect of co‐anionic species and thus provides a robust approach to determine the selectivity between two metal ions towards different competitive ligands. The natural population analysis (NPA), molecular orbital analysis, Mayer bond order analysis, and bond character analysis using Bader's quantum theory of atoms in molecules indicates slightly more covalency for complexes of Am3+ ion that are correlated to the experiental selectvity of Am3+ ion over Eu3+ ion and hence might be useful in the design and development of next generation extractants.  相似文献   

8.
The equilibrium solubility of benzocaine (BZC) in several {methanol (1) + water (2)} mixtures at 298.15 K was determined. Solubility values are expressed in mole fraction and molarity and were calculated with the Jouyban–Acree model. Preferential solvation parameters of BZC by methanol (δx1,3) were derived from their thermodynamic solution properties using the inverse Kirkwood–Buff integrals method. δx1,3 values are negative in water-rich mixtures (0.00 < x1 < 0.32) but positive in the other mixtures (0.32 < x1 < 1.00). To explain the preferential solvation by water in the former case, it is conjecturable that the hydrophobic hydration around non-polar groups of BZC plays a relevant role in the solvation. Moreover, the higher solvation by methanol in mixtures of similar cosolvent compositions and methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol regarding water.  相似文献   

9.
The experimental ionization constants were used to calculate and analyze the effective short-range potential d ij for HCl, HBr, and HI in n-alcohols from methanol to octanol at 5–55°C. Changes in the d ij and Δ ij G* = N A d ij values depending on temperature, solvent, and anions were explained in terms of the Samoilov concept of short-range solvation. The character of changes in Δ ij G* was shown to be determined by the ratio between the contributions of ion-molecular and intermolecular non-Coulomb interactions, which were, in turn, determined by the structural state of the solvent and solvation of electrolyte particles in solutions of hydrogen halides.  相似文献   

10.
The literature data and new results of calorimetric studies of the solution of copper(II), cobalt(II), zinc(II), nickel(II), and mercury(II) complexes with 3,3′,4,4′,5,5′-hexamethyldipyrrolylmethene-2,2′; 3,3′,5,5′-tetramethyl-4,4′-diethyldipyrrolylmethene-2,2′; 3,3′,5,5′-tetramethyl-4,4′-dibutyldipyrrolylmethene-2,2′ (A), and 2,8,12,18-tetramethyl-3,7,13,17-tetrabutylporphin in various organic solvents were used to calculate the enthalpies of transfer Δtr H o from benzene and estimate the contribution of specific solvation caused by the additional coordination (Δc H o) of electron donor solvent molecules (pyridine and dimethylformamide). The greatest degree of coordination unsaturation and ability to extracoordination was characteristic of copper(II) and mercury(II) complexes with ligand A. The influence of the nature of the complex-forming metal, differences in the alkylation of the ligands, solvent properties, and the macrocyclization effect on the solvation and coordination unsaturation of metal complexes was discussed.  相似文献   

11.
The equilibrium solubilities of naproxen (NAP), ketoprofen (KTP), and ibuprofen (IBP) in methanol + water binary mixtures at 298.15 K were determined and the preferential solvation parameters were derived by means of the inverse Kirkwood–Buff integrals (IKBI) method. These drugs are very sensitive to specific solvation effects. The preferential solvation parameters by methanol δx1,3 are negative in water-rich mixtures but positive in compositions from 0.32 in mole fraction of methanol to pure methanol. It is conjecturable that in the former case the hydrophobic hydration around aromatic rings and/or methyl groups plays a relevant role in the solvation. The higher solvation by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of this co-solvent interacting with the hydroxyl group of the drugs. Moreover, drug solubilities were correlated by using the modified nearly ideal binary solvent/Redlich–Kister model obtaining average percentage deviations (APDs) lower than 9.0%.  相似文献   

12.
The average density (〈ρ〉) of the pauci-chain polystyrene microlatices (PCPS), which contains a few linear polystyrene chains, was investigated by laser light scattering (LLS) including both angular dependence of absolute integrated scattered intensity (static LLS) and of the line-width distribution G(Γ) (dynamic LLS). In static LLS, the weight-average particle mass (Mw) and the z-average radius of gyration (Rg) were measured; and simultaneously in dynamic LLS, the hydrodynamic radius distribution was obtained from Laplace inversion of very precisely measured intensity-intensity time correlation function. A combination of both the static and dynamic LLS results leads us to a value of 〈ρ〉. For comparison, we also determined 〈ρ〉 of conventional multichain polystyrene latex (MCPS) by following the same LLS procedure. It was found that 〈ρ〉MCPS = 〈bulk〉 = 1.05 g/cm3, but 〈ρ〉PCPS = 0.92 g/cm3. This difference in density suggests that the intersegmental distance in MCPS or bulk polystyrene is smaller than that in PCPS, even the chains in PCPS are confined to a smaller volume. This might attribute to the fact, namely the intersegmental approaching inside PCPS is mainly the intrachain crossing which is more difficult in comparison with the interchain crossing inside MCPS or bulk polystyrene.  相似文献   

13.
Ternary excess molar enthalpies, HmE, at 298.15 K and atmospheric pressure measured by using a flow microcalorimeter are reported for the (methanol+ethanol+tetrahydropyran) and (methanol+ethanol+1,4-dioxane) mixtures. The pseudobinary excess molar enthalpies for all the systems are found to be positive over the entire range of compositions. The experimental results are correlated with a polynomial equation to estimate the coefficients and standard errors. The results have been compared with those calculated from a UNIQUAC associated solution model in terms of the self-association of alcohols as well as solvation between unlike alcohols and alcohols with tetrahydropyran or 1,4-dioxane. The association constants, solvation constants and optimally fitted binary parameters obtained solely from the pertinent binary correlation predict the ternary excess molar enthalpies with an excellent accuracy.  相似文献   

14.
A search of the published chemical and engineering literature found enthalpy of solution data for an additional 104 and 49 organic compounds dissolved in benzene and acetonitrile, respectively. Standard thermodynamic relationships were used to convert the experimental enthalpy of solution data, ΔHsolv, to enthalpies of solvation, ΔHsolv. Updated Abraham model correlations were derived for describing gas-to-benzene and gas-to-acetonitrile enthalpies of solvation by combining the 104 and 49 additional values to existing benzene and acetonitrile ΔHsolv databases. The updated Abraham model correlations for benzene and acetonitrile described the observed ΔHsolv values to within overall standard deviations of less than 3.4 kJ mol?1.  相似文献   

15.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

16.
The solvatochromism observed for substituted cyanoiron complexes depends on the acceptor properties of the solvents, according to v = vo + a(AN), where ν is the measured spectral charge transfer energy and AN refers to the acceptor number scale. The parameter a was found to be strongly influenced by the solvation characteristics of the ligands compared with those of the cyanides. In H2O+S mixed solvents, preferential solvation by water was observed where S was acetone or acetonitrile, but not when S was methanol, dimethylsulfoxide, dimethylformamide or related solvents.  相似文献   

17.
The kinetics of 1,1-dimethylpropyl peroxy radicals recombination in polar solvents—water, methanol, and their mixtures—was studied by EPR spectroscopy in combination with the stopped-flow method, and the rate constants of this reaction were determined. Peroxyl radicals were generated by mixing solutions of Ce4+ sulfate and 1,1-dimethylpropyl hydroperoxide. The observed EPR signal of the peroxyl radical is a singlet with a g-factor of 2.015 ± 0.001, and a line width of ΔH = (1.36 ± 0.02) × 10?3 T for methanol and ΔH = (9.7 ± 0.2) × 10?4 T for water. The measured rate constants of (CH3)2C(O2·)CH2CH3 radical recombination at 298 K are 2kt = (3.9 ± 0.4) × 104 L mol?1 s?1 for water and 2kt = (5.2 ± 0.5) × 103 L mol?1 s?1 for methanol. A linear relationship between ln(2kt) and the Kirkwood function (ε?1)/(2ε + 1), where e is the dielectric constant of the medium, has been established, indicating an important role of nonspecific solvation in the recombination of tertiary peroxyl radicals.  相似文献   

18.
A training set of eleven X‐ray structures determined for biomimetic complexes between cucurbit[n]uril (CB[7 or 8]) hosts and adamantane‐/diamantane ammonium/aminium guests were studied with DFT‐D3 quantum mechanical computational methods to afford ΔGcalcd binding energies. A novel feature of this work is that the fidelity of the BLYP‐D3/def2‐TZVPP choice of DFT functional was proven by comparison with more accurate methods. For the first time, the CB[n] ? guest complex binding energy subcomponents [for example, ΔEdispersion, ΔEelectrostatic, ΔGsolvation, binding entropy (?TΔS), and induced fit Edeformation(host), Edeformation(guest)] were calculated. Only a few weeks of computation time per complex were required by using this protocol. The deformation (stiffness) and solvation properties (with emphasis on cavity desolvation) of cucurbit[n]uril (n=5, 6, 7, 8) isolated host molecules were also explored by means of the DFT‐D3 method. A high ρ2=0.84 correlation coefficient between ΔGexptl and ΔGcalcd was achieved without any scaling of the calculated terms (at 298 K). This linear dependence was utilized for ΔGcalcd predictions of new complexes. The nature of binding, including the role of high energy water molecules, was also studied. The utility of introduction of tethered [‐(CH2)nNH3]+ amino loops attached to N,N‐dimethyl‐adamantane‐1‐amine and N,N,N′,N′‐tetramethyl diamantane‐4,9‐diamine skeletons (both from an experimental and a theoretical perspective) is presented here as a promising tool for the achievement of new ultra‐high binding guests to CB[7] hosts. Predictions of not yet measured equilibrium constants are presented herein.  相似文献   

19.
Abstract

This paper deals with the use of gel permeation chromatography for the determination of the preferential solvation of polyvinylpyr-rolidone in binary solvent mixtures. It is the first time that this technique is applied to preferential solvation in both organic and aqueous systems. With this rapid and accurate method, we determined values of the preferential solvation coefficient λ1, which are compared with those obtained by light scattering or dialysis equilibrium.  相似文献   

20.
曾勇平  时荣  杨正华 《物理化学学报》2013,29(10):2180-2186
采用Car-Parrinello分子动力学(CPMD)方法分别研究了Be2+在水、甲醇和乙醇中的溶剂结构性质, 并对Be2+的第一溶剂壳结构的实验及理论结果进行了比较. 所得第一溶剂壳结构与已报道的实验和理论结果较为一致. 对径向分布函数、配位数以及角度分布等进行了详细的分析. 结果表明: 在水、甲醇和乙醇中, Be2+第一溶剂壳为稳定理想的四面体结构. 在本文的模拟时间尺度内,没有观察到第一溶剂壳中的分子与第二溶剂壳中的分子进行交换, 进一步证明Be2+第一溶剂壳为稳定的四配位结构. 根据计算得到的空间分布函数, Be2+在溶剂分子的等高面上主要集中分布在溶剂分子接受氢键的方向. 根据氧原子在Be2+周围的分布, 壳层分子主要集中分布在Be2+周围的四个区域, 进一步证实溶剂壳为四面体对称.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号