首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Drawing behavior, flow drawing, and neck drawing, was studied for isotacticpolypropylene fibers in CO2 laser drawing system, and the fiber structure and the mechanical properties of drawn fibers were analyzed. For a certain laser power, flow drawing of polypropylene (PP) was possible up to draw ratio (DR) 19.5. Though the drawing stress was very low, the flow‐drawn PP fiber exhibited oriented crystal structure and improved mechanical properties. On the other hand, neck‐drawing was accomplished from DR 4 to 12, with significant increase in drawing stress that enhanced the development of fiber structure and mechanical properties. Unlike PET, the drawing stress depends not only on the DR, but on irradiated laser power also. The 10–12 times neck‐drawn fibers were highly fibrillated. The fibers having tensile strength 910 MPa, initial modulus 11 GPa, and dynamic modulus 14 GPa were obtained by single‐step laser drawing system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 398–408, 2006  相似文献   

2.
Raman mechanical spectroscopy was used to examine interfacial effects on the stress distribution in model polydiacetylene fiber/epoxy composites. Epoxy release agents were coated on fiber surfaces to modify the interfacial adhesion properties. The modified fiber surfaces were then characterized by scanning electron microscopy and x-ray photoelectron spectroscopy as well as optical microscopy. No difference in the maximum stress value or stress distribution was observed for the two types of fibers, coated or uncoated, used in composites. This suggests that adhesion properties at the composite interface do not affect tensile stress transfer efficiency nor, therefore, the composite tensile modulus along the fiber axis direction in uniaxial composites. Experimental data were also compared with theoretical calculations assuming perfect bonding between fiber and matrix, and idealized frictional force transfer mechanism at the fiber–matrix interface.  相似文献   

3.
A continuous zone-drawing/zone-annealing method was applied to poly(ethylene terephthalate) fibers in order to improve their mechanical properties. Apparatus used for this treatment was assembled in our laboratory. The continuous zone-drawing treatment was carried out at a drawing temperature of 103°C under an applied tension of 6.6 MPa to fully orient amorphous chains in the drawing direction without inducing thermal crystallization. The continuous zone-annealing treatment was carried out twice at an annealing temperature of 160°C under 102.2 MPa and at 183°C under 161.1 MPa to crystallize the highly oriented amorphous chains. The fiber was continuously drawn and annealed at a rate of 420 mm/min. The fiber obtained had a birefringence of 0.260, a degree of crystallinity of 55%, a tensile modulus of 18 GPa, and a storage modulus of 21 GPa at 25°C. Despite the large difference in the treating speed between the continuous zone-annealing and zone-annealing, their values are approximately equal to those of the zone-annealed PET fiber that was reported previously. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 473–481, 1998  相似文献   

4.
《先进技术聚合物》2018,29(3):1123-1137
High mechanical performance and partially biodegradable PE‐composite fibers modified with polylactic acid (PLA) and recycled polyethylene terephthalate (rPET) minor components were prepared using melt extrusion and hot drawing process. Rheological properties, morphology, tensile, and thermal properties were investigated. All blends exhibited shear thinning behavior except for starting PLA and rPET. PLA and rPET dispersed phases appeared as droplets in as‐extruded strand, and PLA droplets were mostly larger than those of rPET. The fibrillation of both PLA and rPET domains was achieved after further hot drawing as the fiber. The morphology and tensile properties of the fibers mainly depended on the types and contents of dispersed phases including draw ratios. The ultimate strength of the polymer fibers at draw ratio of 20 was more than 600 times higher than that of the as‐spun sample of the same composition. Remarkable improvement in secant modulus and ultimate strength was found for PE‐30PLA, but the drawing process of this composition encountered some difficulties and rough surface of the fiber was observed. The stiffness and tensile stress for PE‐10PLA‐10rPET fiber were clearly improved when compared with PE and PE‐10PLA. A decrease in thermal stability of PE/PLA composites was observed with increasing PLA content whereas additional presence of rPET significantly increased the stability of the composites both in nitrogen and in air. PE/PLA/rPET fiber possessing high stiffness with good thermal stability prepared in this work has high potential for being utilized as structural parts for load‐bearing applications.  相似文献   

5.
The tensile properties of self-reinforced polypropylene composites, obtained by rapid extension of an isotactic polypropylene/atactic polypropylene melt, have been measured and correlated to morphological parameters derived from x-ray experiments. The longitudinal morphology of the core-fibrils is found to be independent of sample composition, while the lateral thickness of the fibers varies between 220 Å for iPP and 110 Å for the blend containing 50 wt.% aPP. Critical fiber lengths, as a function of sample composition and the elastic modulus and the yield stress of the fibers, could be determined. While the number of corefibrils increases with mass fraction of atactic polypropylene, the length of the lateral interface between fiber and matrix and the interface volume decreases with increasing aPP mass fraction. It is shown that this interface is responsible for the mechanical behavior of the composite by effecting the transfer of load from matrix to fiber.  相似文献   

6.
Mechanical, dynamic mechanical, and rheological behaviors of a short p‐aramid fiber reinforced thermoplastic polyurethane (TPU) have been studied in the range of 0–30 wt% of fibers. The tensile strength of the composite is improved slightly at higher fiber content with a minimum at around 10 wt% of fibers. The addition of fibers markedly reduces elongation at break and entails a steady increase in the elastic modulus, but decreases the wear resistance of the matrix. Storage modulus (E′) is increased and the shapes of loss tangent (tan δ) peaks point to a possible fiber–matrix interaction. Rheological studies show a power law behavior for all composites and increased viscosity with fiber loading. Study of the tensile and cryogenic fracture surfaces by scanning electron microscopy (SEM) indicates good correlation between the modes of failure and strength of the composites. The micrographs reveal good interfacial adhesion and extensive peeling and fibrillation of the fibers in the compounded and fractured composites. Theoretical models have been used to fit the experimental modulus data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Fibers of PA9‐T, a new semiaromatic polyamide containing a long aliphatic chain, were prepared by melt spinning. As‐spun fibers were subsequently drawn with a CO2 laser‐heated drawing system at different draw ratios and various drawing velocities. On‐line observations of drawing points deciphered two drawing states; namely, flow drawing and neck drawing, over the entire range of drawing. Drawing stress revealed that flow drawing is induced by slight drawing stress under a low draw ratio up to 3, and neck drawing is induced by relatively high drawing stress under a higher draw ratio. The effect of drawing stress and drawing velocity on the development of the structure and properties has been characterized through analysis of birefringence, density, WAXD patterns, and tensile, thermal, and dynamic viscoelastic properties. For the neck‐drawn fibers, almost proportional enhancements of crystallinity and molecular orientation with drawing stress were observed. The flow‐drawn fibers have an essentially amorphous structure, and birefringence and density do not always have a linear relation with properties. The fibers drawn at high drawing speed exhibit improved fiber structure and superior mechanical properties. The maximum tensile strength and Young's modulus of PA9‐T drawn fibers were found to be 652 MPa and 5.3 GPa, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 433–444, 2004  相似文献   

9.
Flax fibers are investigated as reinforcing agents for biodegradable polyesters (Bionolle and poly(lactic acid) plasticized with 15 wt.-% of acetyltributyl citrate, p-PLLA). The composites are obtained either by high temperature compression molding fiber mats sandwiched between polymer films, or by batch mixing fibers with the molten polymer. Fibers in composites obtained by the latter method are much shorter (140-200 microm) than those of the mats (5,000 microm). Flax fibers are found to reinforce both p-PLLA and Bionolle (i.e. tensile modulus and strength increase) when composites based on fiber mats are investigated. Conversely, analogous composites obtained by batch mixing show poor mechanical properties. The observed behavior is attributed to the combined effect of fiber length and fiber-matrix adhesion. If flax fibers with a modified surface chemistry are used, the strength of short fiber composites is seen to improve significantly because the interface strengthens and load is more efficiently transferred. Appropriate surface modifications are performed by heterogeneous acylation reactions or by grafting poly(ethylene glycol) chains (PEG, molecular weight 350 and 750). The highest tensile strength of p-PLLA composites is reached when PEG-grafted flax fibers are used, whereas in the case of Bionolle the best performance is observed with acylated fibers.  相似文献   

10.
The effects of the oriented fiber filler particles on the microscopic properties of the matrix network chains were investigated by using nanofiber filler particles as reinforcing material. Monte Carlo Rotational Isomeric State simulations were carried out for filled poly(ethylene) (PE) networks to study the dependence of the conformational distribution functions of polymer chains and their elastomeric properties on filler loadings. We were especially interested how the excluded volume effect of the nanofiber particles and their orientation (specifically orientational anisotropy) in the matrix influence elastomeric properties of the network. Distribution functions of the end-to-end distances of polymer chains for both unfilled and filled networks were calculated. Effects of nanofiber reinforcements with varying fiber radii and fiber volume fractions were investigated. We have found that the presence of nanofibers significantly increase the non-Gaussian behavior of polymer chains in the composite. The anisotropic effects of the nanofibers on mechanical properties of polymeric composites were studied as a function of their relative orientation to the direction of deformation. The modulus (reduced nominal stress per unit strain) was calculated from the distribution of end-to-end distances of polymer chains using the Mark–Curro method. Relatively small amount of nanofibers was found to increase the normalized moduli of the composite. Our results are quite in satisfactory qualitative agreement with experimental data reported in the literature. This shows that computer simulations provide a powerful tool in predicting physical properties of composite materials.  相似文献   

11.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

12.
A fiber composite model of highly drawn polyethylene is presented. Quantitative predictions and calculations are made using shear-lag theory. The drawing process is shown to occur in two stages, a neck and a postneck taper. It is shown that there is an empirical linear relationship, with a high correlation, between the parameter x in shear-lag theory (which involves the aspect ratio of the reinforcing elements and the square root of the ratio of matrix shear modulus to the Young's modulus of the reinforcing elements) and the 3/2 power of the taper draw ratio. It is concluded that crystalline fibrils (the reinforcing elements) deform homogeneously during the secondary, taper drawing process. The increase in aspect ratio resulting from this homogeneous deformation is held to be responsible for the increase in tensile modulus owing to the increased efficiency of the fibrils as reinforcing elements. The model is also used to explain the self-hardening process exhibited by these fibers and, using measurements of density of hardened fibers, to predict that immediately after the neck the aspect (length to diameter) ratio of the crystalline reinforcing elements is ca. 2 and that the shear modulus of the matrix material in as-drawn fibers is ~103N/m2 and does not change significantly during the taper-drawing process.  相似文献   

13.
The micromechanism of tensile deformation of poly[p-(2-hydroxyethoxy)benzoic acid] fibers is discussed on the basis of a detailed esr study of radical formation. The concentration of primary phenoxy radicals, which were detected during deformation at room temperature as a direct indicator of main-chain rupture, was determined by extrapolating the radical decay curves at various strains to zero time. The relation between the initial radical concentration and the strain is well expressed by the cumulative normal distribution curve. By use of this relation and a model of fiber structure, the distribution of the contour length of tie chains was determined. No radicals were detected during a second stretching cycle until the maximum strain in the first run was exceeded. The deformation model which includes alternating crystalline and amorphous regions connected by tie chains, a distribution of contour lengths of tie chains, and a phase transformation of molecular chains in the crystalline region accounted fairly well for the observed stress–strain behavior of monofilaments in first and second stretching cycles. The comparison between the observed and the calculated radical concentration suggests that statistical factors and other deformation mechanisms have to be taken into account.  相似文献   

14.
Oriented structure, mainly controlled by processing conditions, is another efficient method of reinforcing polymer materials in addition to compounding with rigid inorganic fillers such as carbon nanotubes (CNTs). The mechanical properties of oriented polypropylene (PP)/multiwalled CNT (MWCNT) composites, which are vital to their application fields, are investigated extensively in this paper, with an aim to distinguish the contribution of MWCNTs contents from that of the oriented structure to the final performance of the composite. The results indicate that MWCNTs mainly increase the modulus of the composites by approximately 140%. The oriented structure formed during the die-drawing process contributes more to the enhancement of tensile strength, increasing up to 550%. The modulus and tensile strength can be further improved by increasing the drawing speed. Moreover, the tensile stress field in the die-drawing process can vastly improve the dispersion of the MWCNTs in the matrix, thus providing a new idea for improving the dispersion of nanofillers in the polymer matrix.  相似文献   

15.
闫寿科 《高分子科学》2014,32(4):509-518
Matrix/fiber composites of β-form isotactic polypropylene(iPP) matrix and α-iPP or PA6 fibers were prepared by laminating technique under different preparation temperatures. The mechanical properties and interfacial morphologies of these composites were studied by tensile test, optical microscopy and scanning electron microscopy, respectively. The experimental results show that the tensile yield load and tensile modulus of β-iPP/PA6 matrix/fiber systems increased significantly at the expense of elongation at break. These mechanical properties show essentially no dependence on the sample preparation temperature. On the other hand, the mechanical properties of iPP matrix/fiber single polymer composites depend strongly on the sample preparation temperature. At low sample preparation temperature, e.g., 172 ℃, the solid α-iPP fiber induces α-iPP crystallization, leading to the formation of α-iPP transcrystalline layer around the fiber. This results in a remarkable increment of the tensile yield load and tensile modulus. The elongation at break is also much better than that of the iPP/PA6 matrix/fiber system. It reflects a better interfacial adhesion of the single polymer composite compared with the iPP/PA6 composite. At higher sample preparation temperature, e.g., 174 ℃ or 176 ℃, the partial surface melting of the oriented fiber allows interdiffusion of iPP molecular chains in the molten fiber and matrix melt. The penetration of matrix chains into the molten iPP fiber results in some iPP molecular chains being included partially in the recrystallized fiber and the induced β-transcrystalline layers. This kind of configuration leads to an improvement of interfacial adhesion between the fiber and matrix, which causes a simultaneous increase of the tensile yield load, tensile modulus and elongation at break of β-iPP.  相似文献   

16.
The mechanical behavior of HDPE, medium-density PE, and amorphous and amorphous-crystalline PET after their preliminary orientation is studied. The polymers are oriented by rolling at room temperature on lab-scale rolls, tensile drawing at temperatures somewhat higher than their glass-transition temperatures, and extrusion at room temperature. At low degrees of rolling (below 1.5), the tensile yield stress does not actually increase. (In amorphous-crystalline PET, this parameter even decreases.) It seems that the absence of strain hardening at low draw ratios is a common feature of the behavior of polymers below their glass-transition temperatures. In contrast to the tensile yield stress, the engineering strength increases in proportion to the degree of rolling. A new procedure for construction of the dependence of true tensile yield stress on tensile strain is advanced. At low strains, the true tensile yield stress shows practically no increase. This conclusion is verified by theoretical calculations.  相似文献   

17.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

18.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

19.
Thermoplastic fiber composites were prepared using high modulus lyocell (regenerated cellulose) fibers for reinforcement and cellulose acetate butyrate (CAB) as matrix. Choices were made with regard to fiber options (fabric versus continuous tow) and method of matrix deposition (prepregging by powder coating, film stacking, or solution impregnating). The results suggest that solution-prepregged fiber tow consolidated at circa 200°C produced unidirectional consolidated panels with tensile strength, modulus, and strain at failure values of approximately 250MPa,>20GPa and 3–4%, respectively, at fiber volume contents of approximately 60%. Modulus and ultimate tensile strength increased with fiber content, and modulus followed rule-of-mixture behavior. Adequate surface wetting and matrix-fiber adhesion were found with solution-prepregged composites. The unexpectedly low strain at failure (2 to <4%) was attributed to brittle matrix failure, and failure surfaces revealed that the fibers, for the most part, remained intact after the matrix had failed.  相似文献   

20.
贾玉玺 《高分子科学》2014,32(6):703-710
A constitutive model is constructed to consider the resin matrix post-yield softening and progressive hardening behaviors. A user-defined material mechanical behavior(UMAT) subroutine is created, then the non-linear three-dimensional finite element analysis on the tensile processes of multi-fiber composites is conducted. The approximate 45° shear bands emanating from the matrix crack tip are found, being coincided with the experimental observations. The shear stress on the adjacent intact fiber/matrix interface is strongly influenced by the shear band and thus the stress concentration factor(SCF) changes obviously in the adjacent fibers. The distinct stress redistribution in the adjacent intact fibers implies the significant effect of the shear bands on the progressive fiber fracture initiation. As the inter-fiber spacing increases, the peak value of the SCF in the adjacent intact fiber decreases, whereas the overload zone becomes wider. The research has provided a helpful tool to evaluate the failure of fiber composites and optimize the composite performance through the proper selection of resin matrix properties and fiber volume fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号