首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The molecular reorientation occurring within deformation bands in one-way drawn polypropylene films has been studied by optical microscopy. The deformation bands formed at the yield stress in tension tests on specimens cut at various angles to the initial drawing direction. It is shown that the principal axes of the refractive index ellipsoid in the deformation band coincide with the principal axes of the plastic strain ellipsoid, provided that the strains are referred to the initial isotropic state, i.e., prior to the initial drawing process. This result is similar to the results obtained previously for poly(ethylene terephthalate), but differes somewhat from the results obtained by other workers for poly(vinyl chloride). A possible reason for these differences is discussed.  相似文献   

2.
The crystal orientation of solid-state biaxially drawn solution-crystallized ultra-high-molecular weight polyethylene (UHMW-PE) film has been revealed from flat-plate wide-angle x-ray scattering (WAXS) patterns and interpreted in terms of crystal plasticity. A slightly drawn film (λ ≤ 3 × 3) possesses only a (100) planar orientation, whereas in a highly drawn film (λ ≥ 6 × 6), a mixed (100) and {110} planar orientation is present. Crystal deformation is found to proceed both by slip on (100) and {110} planes, resulting in a (100) texture in a similar way to crystal deformation in uniaxially drawn polyethylene and by {110} 〈110 〉 transverse slip and/or {310} twinning which results in a {110} texture. It is postulated that during transverse slip or twinning, the molecules deform without chain extension. As a consequence, neither the molecular draw ratio nor the tensile properties change significantly for macroscopic draw ratios above 10 in contrast to the data obtained for uniaxially drawn polyethylene.  相似文献   

3.
The transformation of microspherulitic quenched and annealed polyethylene film into highly oriented drawn material with the characteristic fiber structure was investigated by small-angle and wide-angle x-ray measurements and by a study of the thermograms after the fuming nitric acid treatment. With the details of deformation depending slightly on the crystallinity, one observes generally a preferential tilt of the platelets against draw direction at draw ratios below 2. At least in annealed material, an increasing tilt of the molecule within the lamella is also observed, which leads at higher draw ratios to slipping of blocks in the crystallites. With further drawing a new fiber structure appears, which is practically independent of the thermal history of the original film. This fact is established by investigation of the crystal thickness by three different methods; investigations of small-angle scattering, study of the width of the (002) reflection, and investigation of the debris after treatment with fuming nitric acid.  相似文献   

4.
The crystalline structures of “microlayer” and “nanolayer” polyethylene have been examined in coextruded films comprised of alternating layers of high-density polyethylene and polystyrene. Transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), and wide-angle x-ray scattering (WAXS) reveal that microlayer polyethylene, where the layer thickness is on the order of several microns, crystallizes with the normal unoriented lamellar morphology. In nanolayer films, where the film thickness of tens of nanometers is on the size scale of molecular dimensions, lamellae are oriented with the long axes perpendicular to the extrusion direction in a row-nucleated morphology similar to structures described in the literature. The lamellae are partially twisted about the long axes. The preferred twist angles of ±40° orient the lamellar surfaces normal to the layer surface. The row-nucleated morphology imparts highly anisotropic mechanical properties to the nanolayer polyethylene.  相似文献   

5.
The deformation of polyethylene in terms of structural processes has been investigated by low-and wide-angle x-ray diffraction in the case of low-density and, to a lesser extent, high-density polyethylene. The samples possessed a range of simple textures which enabled the deformation processes to be identified. The results are interpreted in terms of a model of stacks of lamellae which have axes along the original draw direction and which deform by lamellar slip, chain slip, and lamellar separation. In most cases these processes accounted for the macroscopic strain but in some cases discrepancies were observed which could be accounted for by inhomogeneous deformation or by the effects of a distribution of lamellar thicknesses. Attempts were made to identify fibrillar slip, without success. The relative contributions of the various deformation processes are examined as a function of temperature and sample treatment by defining a compliance constant for each process. Below room temperature, the results are consistent with expectations based on the α and β mechanical relaxations, whereas the unusual effects at high temperatures are attributed to gradual melting. The compliance constants are also found to depend on the annealing temperature of the sample, and are used to predict the mechanical anisotropy. The volume changes accompanying lamellar separation are examined. They were less than expected in low-density polyethylene, but satisfactory agreement was obtained in high-density polyethylene. A general relation is suggested between volume changes and the lateral development of the lamellae. Hence in narrow lamellae the interlamellar layer can contract laterally whereas the greater constraints imposed by wide lamellae lead to void formation. Other effects examined include the reversibility of the processes which is most marked in the case of chain slip and which is explained by the presence of restoring forces in the amorphous regions including the fold surface. Finally, the differences between low- and highdensity polyethylene are highlighted, emphasizing the part played in the deformation by the amorphous component.  相似文献   

6.
Billets of chain-extended polyethylene were prepared from Alathon 7050 (Mw 59,000, Mn 19,000) in an Instron capillary rheometer by crystallization at a constant pressure of 460 MPa, at a series of teimperatures from 198 to 221°C corresponding to varying degrees of undercooling. This gives chain-extended morphologies with a range of crystallinites and lamellar thicknesses. The billets were then solid-state extruded at 100°C through a conical die with 20° entrance angle up to an extrusion draw ration 23.4. Thermal behavior was studied with differential scanning calorimetry. The orientation function measured by wide-angle x-ray diffraction showed higher orientation function measured by wide-angle x-ray diffraction showed higher orientation at equivalent draw ratio when the initial billets were crystallized at lower temperatures. Drawing efficiency, defined as the ratio of molecular draw ratio (from shrinkage) to extrusion draw ratio correspondingly increases, reaching a maximum of 0.71 in our solid-state extrusion. These studies show that highly chain-extended polyethylene, i.e., with few chain entanglements, draws poorly. Drawability was improved by increasing chain entanglements by lowering the crystallization temperature. Electron micrographs of fracture surface replicas of extrudates revealed the coexistence of undeformed, tilted, partially drawn lamellae and fibrillar structure consistent with the cahange of morphologies in Peterlin's model of plastic deformation.  相似文献   

7.
Deformation structures resembling kink bands have previously been reported in a number of oriented semicrystalline polymers which have undergone various modes of deformation. In the present work, such structures have been observed and studied in solid-state extruded polyethylene which has been processed to give a biaxial, “single crystal” texture. Deformation of this material by bending followed by unbending has been observed to lead to shear during the bending stage and to void formation during the unbending stage. The kink bands which form during this treatment exhibit a single morphology regardless of the axis of bending so long as the direction of compression during bending is parallel to the original extrusion direction. Besides intracrystalline slip, which is known to contribute at least in part to the process of kink band formation, mechanisms involving interlamellar slip and interfibrillar slip are also considered. These mechanisms are considered in terms of three distinct experimental observations: the relationship between the kink boundary and the x-ray long period, the process of void formation during unbending, and the single characteristic morphology of the kink bands.  相似文献   

8.
Extrudates of solid linear polyethylene prepared under proper pressure and temperature conditions have a high c axis orientation along the extrusion direction, with lamellar crystals and amorphous layers stacked alternately along the extrusion direction. Kink bands were formed by compressing the oriented extrudate at room temperature along the extrusion direction. Inspection of the kink bands by wide-angle and small-angle x-ray diffraction and electron microscopy revealed that the fiber axis was rotated from the original axis direction by 70–75° and that the lamellar crystals were inclined to the fiber axis in the kink band by 55–60° and stacked nearly parallel to the kink boundary. The superstructural change during the formation of the kink band could not be interpreted in terms of uniform c axis shear alone. In addition to such a mechanism, it was necessary to take into account intermicrofibril and/or intercrystallite slip.  相似文献   

9.
Small-angle light-scattering (SALS) patterns were obtained during melting and crystallization of blends of linear low-density polyethylene (LLDPE) with conventional low-density polyethylene (LDPE). Quantitative measurements of these SALS patterns using a two-dimensional optical multichannel analyzer apparatus (OMA2) indicate that the LLDPE which is miscible with the LDPE component in the molten state crystallizes first, forming volume-filling spherulites. The LDPE then crystallizes within the preformed spherulites. These findings are supported by optical microscopy studies showing that the blend samples were volume filled with one kind of the spherulites having a radius comparable to that of the pure LLDPE. The SALS intensity curve changes with composition of the blends in a manner that may be interpreted by considering the orientation of crystals within spherulites. It has been observed that the spherulites in the blend have more diffuse boundaries as the LDPE content increases. The lattice spacing and long spacings in blends were obtained by wide-angle and small-angle x-ray scattering, respectively. The SALS technique along with differential scanning calorimetry (DSC) is shown to be useful for determining the crystallization behavior of a crystallizable polymer blend system.  相似文献   

10.
The deformation behavior of a range of polyethylene materials which differ with respect to both their short-chain branch content and molecular weight has been studied. Mechanical measurements carried out over a wide range of temperatures have shown that there is a sudden transition in the measured tensile yield strain at a temperature which is dependent on both the grade of material and the applied strain rate. Above the transition temperature all of the materials behave in a nonlinear viscoelastic manner and the wide-angle X-ray scattering patterns obtained have shown that at low applied strains reorientation of the lamellae is observed before necking. Below the transition temperature the materials all behave in an elastic-plastic manner and there is no evidence of lamellar reorientation before necking. This transition in yield mechanism is not apparent when considering the yield stress data alone. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 545–552, 1997  相似文献   

11.
Uniaxially orienred semicrystalline poly(ethylene terephthalate) (PET) and poly(propylene) (PP) films were loaded parallel to draw direction at various temperatures. Changes in the submicroscopical structure of the films under load were examined by small and wide-angle x-ray scattering (SAXS; WAXS) and birefringence measurements. WAXS measurements reveal a decrease of the initial high orientation of the chains in the crystallites during deformation. Simultaneously, an increase of the birefringence was detected, indicating an orientation of chains in the amorphous regions. The alteration of the long period reflections in the SAXS patterns give strong evidence that lamellar stacks with different orientation angles according to load direction are present. Depending on the orientation of stacks, the contribution of lamellar separation to sample deformation alters, giving rise to different amounts of density changes in the stacks. Absolute intensity measurements of SAXS using a Kratky apparatus reveal that lamellar separation occurs preferentially below or in the range of the glass-transition temperature at small strain. With increasing strain and temperatures above the glass-transition slip deformation mechanisms become more important. The formation of microvoids was observed at strain near to elongation at break below or in the range of glass-transition temperature.  相似文献   

12.
Doubly oriented low-density polyethylene with parallel lamellae was compressed along the initial draw direction (i.e., at right angles to the lamellar surfaces) at 20°C. Wide- and low-angle x-ray diffraction were used to determine the changes in the molecular orientation and in the texture. During the compression, specimens previously annealed at or near 102°C were found to undergo changes in length, in long spacing, and in molecular orientation which were consistent with an (001) chain slip mechanism. In specimens annealed at higher temperatures x-ray diffraction indicated that during compression some series component of the long spacing was compressed by a much smaller amount than the remainder of the long spacing, which deformed by chain slip; in these cases it was found that the macroscopic strain along the compression axis (εy) was greater than the strain in the long spacing along that axis (εd). It is suggested that the missing strain which makes εy greater than εd is due to partial melting and the consequent development of amorphous regions between the stacks of lamellae.  相似文献   

13.
Wide-angle x-ray scattering (WAXS) and Raman spectroscopic data show that on both the crystal and molecular levels, a bimodal stress distribution exists in strained high-performance polyethylene fibers. In part of the crystalline PE the microscopic strain level is high (ca. 70% of macroscopic strain); in the remainder, the microscopic strain level is low (independent of macroscopic strain, ca. 0.4%). During stress relaxation the fraction of highly strained PE decreases with time. WAXS revealed no indication of a change in the a and b unit-cell dimensions. Furthermore, no indications for stress-induced formation of monoclinic and/or hexagonal PE and for crystal breaking were found. From the latter it can be deduced that all chains within one crystal are equally strained. The WAXS results are used to calibrate the stress-induced frequency shifts of Raman bands.  相似文献   

14.
Oriented polyethylene (PE) films with surfaces bounded by the (100) plane were prepared. On the film surfaces, isotactic polypropylene (iPP) was crystallized epitaxially from solution as quadrits with their sides parallel and perpendicular to the polyethylene chain axis. In the through wide-angle x-ray diffraction pattern (taken with incident x-rays normal to the polyethylene film surface), the 111 iPP reflections was observed on the meridian (Parallel to the polyethylene chain axis). In the edge patterns (taken with x-rays incident on the edge of the polyethylene film), 040 and 060 reflections were observed on the equator. From the diffraction patterns, the following lattice coincidence was observed between polyethylene and isotactic polypropylene: (010)iPP//(100) PE, [101]iPP//[001] PE. The Small-angle x-ray scattering patterns showed that edge-on isotactic polypropylene lamellae 9 nm thick were arranged with their long axes inclined at an angle of 40° from the polyethylene axis. Molecular chains were oriented within the lamellae normal to the surfaces.  相似文献   

15.
A blend system of linear low-density polyethylene (LLDPE) (ethylene butene-1 copolymer) with high-density (linear) polyethylene (HDPE) is investigated by differential scanning calorimetry (DSC), wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), Raman longitudinal-acoustic-mode spectroscopy (LAM), and light scattering (LS). For slowly cooled or quenched samples, one single endotherm is evident in the DSC curve which depends on the composition. No separate peaks are observed in the WAXD, SAXS, Raman-LAM, and LS studies on the LLDPE/HDPE blends. This observation along with the fact that no peak broadening is observed suggests that these peaks are associated with the presence of a single component. In no case did we see double peaks or a broadened peak that might be associated with two closely spaced unresolved peaks. This suggests that segregation has not taken place at the structural levels of crystalline, lamellar, and spherulitic textures. A single-step drop in the scattered intensity (IHv) as a function of temperature is seen in the LS studies. It is therefore concluded that cocrystallization between the LLDPE and HDPE components occurs. The mechanical and optical α, β, and γ relaxations of these blends are explored by dynamic birefringence. The 50/50 blend displays the intermediate relaxation behavior between those of the components in all α, β, and γ regions. This observation is reminiscent of the characteristic of the typical miscible blends.  相似文献   

16.
The orientation and crystallinity of a series of high-density polyethylene (HDPE) tubular films is characterized using wide-angle x-ray scattering pole-figure analysis and birefringence. The films ranged from uniaxial to equal biaxial. The data were used to compute biaxial orientation factors which were then plotted on an orientation-factor triangle diagram. It was shown, within the range of conditions studied, that both the crystalline biaxial orientation factors were unique functions of the stresses exerted on the bubble at the freeze line. Both correlations are the same as those developed by Dees and Spruiell for melt-spun HDPE fibers. SAXS measurements on the films suggest lamellar structures in both uniaxial and biaxial films.  相似文献   

17.
When oriented polyethylene is sheared at an angle to the orientation axis, kink bands often develop and grow, with a resulting change of the crystalline orientation. Beside the crystalline reorientation, the following changes within the kink bands have been observed with wide-angle x-rays: (a) partial transformation to a monoclinic from the normal orthorhombic unit cell; (b) partial alignment of the orthorhombic b axes; (c) rotation of the orthorhombic c axes of a fraction of the crystals around the kinks by an extra 40 to 60° beyond that of the fibrils; and (d) misalignment of the orthorhombic (hk0) planes by a few degrees. These results are suggested to arise, at least in part, from crystal flattening and from crystal twinning or pseudotwinning on planes intersecting the molecular axes.  相似文献   

18.
The effect of degree of strain on texture development in high-density polyethylene has been studied by pole figure analysis for unidirectional rolling. The crystallite orientation distribution in rolling textures has been quantified with an efficient technique which fits three-parameter, two-dimensional Gaussian-type distributions to pole figure intensity data around ideal single crystal orientations. During flat rolling of polyethylene a texture consisting of a strong (100) [001] component and a weak (110) [001] component develops continuously from the lowest true strain of 0.24 (21% reduction) up to the highest true strain of 1.36 (74% reduction). The peak intensity of the Gaussian distributions of both (100) [001] and (110) [001] components increase continuously to the highest strain. The maximum angular breadth of both component distributions, which are roughly perpendicular to the strain direction, remains constant with increasing strain. The minimum angular breadth of both component distributions, which are roughly parallel to the strain direction, decreases continuously owing to gradual alignment of the covalently bonded chain backbone parallel to the strain direction. The development of the (100) [001] component is explained by slip on (100) planes while the weak (110) [001] component is explained by slip on (110) planes. Although the latter component was previously attributed to (110) or (310) relaxation twinning, this seems unlikely because of the lateral constraint during plane strain deformation conditions used in this study.  相似文献   

19.
Polarized infrared absorption spectra have been obtained by Fourier-transform spectroscopy for several crystalline and noncrystalline absorption bands of polyethylene crystallized by orientation and pressure in capillary viscometer. An analysis of data obtained at room temperature yielded degrees of crystallinity which are in good accord with values obtained from calorimetry and density measurements. The dichroism of the infrared absorption bands for the crystalline region revealed an extreme degree of orientation consistent with previous x-ray studies and also demonstrated that the degree of orientation is a good or better than that obtained from drawn polyethylene films with extension ratios of 20. Dichroism of bands from the amorphous phases revealed that the noncrystalline chain segments are in a comparatively relaxed state compared with results for drawn films having extension ratios of about 2 to 7. This is 1/10 to 1/3 the extension ratio of drawn polyethylene which shows maximum crystalline orientation. The results also indicated that the ratio of the GTG′ to GG segment conformations in the amorphous regions is larger than that of amorphous portions in unoriented polyethylene. The vinyl endgroups were shown to be highly oriented, while the main bulk of the amorphous polymer was fairly relaxed, i.e., of low orientation. It is concluded that the amorphous polyethylene state is strongly dependent on the nature of the crystalline–amorphous interface.  相似文献   

20.
A wide-angle x-ray diffraction (WAXD) study of the development of molecular orientation in the crystalline phase of ultra-high–molecular weight polyethylene films prepared by the gelation–crystallization method is presented. WAXD scans of the undrawn films show that the lamellae are oriented in the plane of the films. Upon drawing at 130°C, the orientation of the molecular chains changes from the direction normal to the film surface (ND) to the elongation direction. The decrease of the 200/020 intensity ratio at low draw ration (λ <10) indicates that double orientation develops during the transformation from the lamellar to the fibrillar morphology, with the a-axis oriented parallel to ND. The orientation distributions of the 110, 200, 020, and 002 planes of the orthorhombic unit cell of polyethylene were studied and characterized by the coefficients of a Legendre polynomial series. At a draw ratio of 4.5, the second-order coefficient, 〈P2(cos χ〉, already gets close to its limiting value, but it is shown that higher order coefficients of the polynomial series can be used to describe the evolution of the orentation, even up to λ = 50. The coefficients relative to the molecular chain orientation, 〈Pn(cos χ)〉c, can be calculated from different crystalline reflections. Curve-fitting calculations were made in order to improve the correlation between the results obtained from the orientation distribution of the 110, 020, and 002 planes. A Person VII function was found to give a better fit of the experimental curves than Gaussian or Lorentzian equations. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号