首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radius of gyration of polystyrene molecules in the bulk polymer has been measured by low angle neutron scattering from a dilute solid solution of poly proto-styrene in a matrix of polydeutero-styrene. The radius of gyration is 90 A? ± 5 percent (Ma = 97,200), which agrees within experimental error with the unperturbed dimensions of the polymer chain (? 84 Å) as determined from the solution properties of the polymer.  相似文献   

2.
Time-resolved optical spectroscopy is used to investigate the reorientation of three rigid probes and one labeled chain in bulk polystyrene. Orientational correlation times for these probes and labels are found to be in the range of 10?8–10?10 s at temperatures of 180–300°C. Consistent with previous studies, the attachment of a chromophore into the chain backbone slows its dynamics by about an order of magnitude. The temperature dependences of the correlation times are similar to the temperature dependence of the viscosity. When combined with probe reorientation times near and below Tg, these results indicate that probe reorientation tracks the temperature dependence of the viscosity quite well over twelve decades in time. In contrast, literature results for the translational diffusion of similarly sized probes indicates a substantially weaker temperature dependence near Tg. Thus it appears that a fundamental change in the mechanism of probe motion occurs near Tg. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
4.
The dynamics of entangled polymeric chains in a polymer filled with nanoparticles is studied by means of molecular dynamics simulations of a model system. The primary objective is to study to what extent the reptation of polymers not in direct contact with fillers is modified with respect to the neat material. To this end, two systems are considered: A regular filled material in which the filler-polymer affinity is controlled, and a system in which the beads in contact with the filler at the beginning of the production phase of the simulation are tethered to the filler surface. This second system represents the limit case of long polymer-filler attachment time. In this case attention is focused on the free chains of the melt. The dynamics in the two models is different. In the filled system uniform slowing down for all Rouse modes is observed. The effect varies monotonically with the filler-polymer affinity. Up to saturation, this behavior may be captured by usual models with an effective, affinity-dependent, friction coefficient. In the system with grafted chains, the free chain Rouse dynamics is identical to that in the neat material, except for the longest modes which are significantly slowed down. More interestingly, the dynamics of the free chains depends in a nonmonotonic way on the polymer-filler affinity, although the free chains do not come in direct contact with the filler. This effect is due to small changes in the structure of the polydisperse brush upon modification of the affinity. Specifically, the density of the brush and the amount of interpenetration of free and grafted chains depend on the filler-polymer affinity. The use of a reptation model with modified tube diameter to capture this behavior is discussed.  相似文献   

5.
This investigation aimed to clarify the issue of whether polymer chains are entangled in ultrathin films spin-coated onto substrates. This was done using a fluorescence probe method to observe the behavior of two types of poly(methyl methacrylate) (PMMA), one having a carbazolyl (Cz) moiety (PMMA-Cz) and the other having an anthryl (At) moiety (PMMA-At). In both cases, the moiety fraction was 1 unit for 400 units of polymer. We prepared ultrathin films (thickness: 4-88 nm) on quartz substrates from PMMA-Cz, PMMA-At, and a mixture of the two using a spin-coating method. When the PMMA films prepared from the mixture of the two PMMAs were excited at 292 nm, which is preferentially absorbed by Cz rather than At, the Cz fluorescence was found to be quenched dramatically while the At fluorescence increased significantly. This effect is due to the proximity of the Cz to the At, which permits the transfer of excitation energy between them. The average distance between Cz and At can be calculated using the F?rster mechanism. When the ultrathin film thickness was between 12 and 88 nm, the average distance was found to be 2 nm. This is much shorter than the radii of gyration of the polymers. From this it is clear that two polymer molecules in an ultrathin film do experience entanglement, as has been hypothesized. Thus, we conclude that the difference between certain properties of ultrathin films and the properties of the same materials in bulk are not induced by a decrease in the level of polymer chain entanglement.  相似文献   

6.
The theory of a freely jointed polymer chain is modified by introduction of interactions between dipole chain segments and an orienting field. Such a field results either from external forces (e.g. external electric or magnetic fields) or represents interactions between dipole segments of chains (molecular mean-field). The distribution of orientations of chain segments and the free energy of a chain in such orienting fields are calculated and discussed.  相似文献   

7.
We investigate the kinetics of loop formation in ideal flexible polymer chains (the Rouse model), and polymers in good and poor solvents. We show for the Rouse model, using a modification of the theory of Szabo, Schulten, and Schulten, that the time scale for cyclization is tau(c) approximately tau(0)N(2) (where tau(0) is a microscopic time scale and N is the number of monomers), provided the coupling between the relaxation dynamics of the end-to-end vector and the looping dynamics is taken into account. The resulting analytic expression fits the simulation results accurately when a, the capture radius for contact formation, exceeds b, the average distance between two connected beads. Simulations also show that when a < b, tau(c) approximately N(alpha)(tau), where 1.5 < alpha(tau) < or = 2 in the range 7 < N < 200 used in the simulations. By using a diffusion coefficient that is dependent on the length scales a and b (with a < b), which captures the two-stage mechanism by which looping occurs when a < b, we obtain an analytic expression for tauc that fits the simulation results well. The kinetics of contact formation between the ends of the chain are profoundly effected when interactions between monomers are taken into account. Remarkably, for N < 100, the values of tau(c) decrease by more than 2 orders of magnitude when the solvent quality changes from good to poor. Fits of the simulation data for tau(c) to a power law in N (tau(c) approximately N(alpha)(tau)) show that alpha(tau) varies from about 2.4 in a good solvent to about 1.0 in poor solvents. The effective exponent alpha(tau) decreases as the strength of the attractive monomer-monomer interactions increases. Loop formation in poor solvents, in which the polymer adopts dense, compact globular conformations, occurs by a reptation-like mechanism of the ends of the chain. The time for contact formation between beads that are interior to the chain in good solvents changes nonmonotonically as the loop length varies. In contrast, the variation in interior loop closure time is monotonic in poor solvents. The implications of our results for contact formation in polypeptide chains, RNA, and single-stranded DNA are briefly outlined.  相似文献   

8.
A rapidly convergent expression is given for calculating the Madelung energy of infinite linear polymers with small radius.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

9.
Fibres of [Ru(2)Br(micro-O(2)CEt)4]n polymer have been isolated on different surfaces under specific conditions, and morphologically characterised by AFM and STM, showing an unexpected helical internal structure.  相似文献   

10.
陈进 《高分子科学》2010,(3):311-322
<正>Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths N_b,arm lengths N_a and arm densities m are carried out to study the elastic behavior of comb-like polymer chains.The radius of gyration,the shape factors and bond length in different cases during elastic process are calculated,and it is found that the comb-like polymer molecules with longer backbone or shorter arm are more close to linear chains.But the arm density m affects the chain conformation non-monotonously.Some thermodynamic properties are also studied.Average Helmholtz free energy and elastic force f all increase with elongation ratioλfor all chains.  相似文献   

11.
In this article, the conformational properties and elastic behaviors of ring polymers in the process of tensile elongation are investigated with the Monte Carlo method and the bond fluctuation model. The ratio of the mean‐square diameter <d2> to the mean‐square radius of gyration <S2> increases with the elongation ratio, λ, and the instantaneous shape of ring polymers is more symmetric than that of linear chains in the process of tensile elongation. Here <d2> for ring polymers rather than the mean‐square end‐to‐end distance <R2> for linear polymers is defined as the average of squared distances between two segments separated by N/2 bonds, where N represents the total number of bonds. Local quantities, that is, the mean‐square bond length <b2> and the mean bond angle <θ> increase with λ, especially for short ring chains. The <d2> and <S2> have the same relationship with the chain length, N, that is, <d2> ~ N1.130±0.020 and <S2> ~ N1.160±0.013 for a different λ. Some thermodynamics properties are also addressed here. The average energy per bond <U> decreases with λ and the average Helmholtz free energy and elastic force f increase with λ, especially for short ring chains. Comparisons with linear chains are also made. These investigations may provide insight into the elastic behaviors of ring polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 223–232, 2005  相似文献   

12.
Elastic behaviors of single polymer chains adsorbed on the attractive surface are first investigated using Monte Carlo simulation method based on the bond fluctuation model. We investigate the chain size and shape of adsorbed chains, such as mean-square radius of gyration S2, mean-square bond length b2, shape factors sf(i) and delta*, and the orientation of chain segments P2, to illuminate how the shape of polymer chains changes during the process of tensile elongation. There are some special behaviors of the chain size and shape at the beginning of elongation, especially for strong attraction interaction. For example, mean fraction of adsorbed segments decreases abruptly in the region of small elongation ratio and then decreases slowly with increasing elongation ratio. In fact, the chain size and shape also changes abruptly for small elongation ratio with strong attraction interaction. Some thermodynamics properties are also investigated here. Average Helmholtz free energy increases fast for elongation ratio lambda<1.15, especially with strong attraction, and increases slowly for lambda>1.15. Similar behaviors are obtained for average energy per bond. Elastic force (f ) and energy contribution to force (f(U)) are also studied, and we find that elastic force decreases abruptly for lambda<1.15, and there is a minimum of elastic force for strong attraction interaction, then increases very slowly with increasing elongation ratio. However, there are different behaviors for weak attraction interaction. For energy contribution to force (f(U)), there is a maximum value for strong attraction interaction in the region of lambda<1.15. Some comparisons with the atomic force microscopy experiments are also made. These investigations may provide some insights into the elastic behaviors of adsorbed polymer chains.  相似文献   

13.
Intrinsic viscosity of wormlike polymer chains   总被引:2,自引:0,他引:2  
  相似文献   

14.
Monte Carlo simulations were performed on semiflexible polymer chains with the goal of delineating their isotropic-nematic (IN) and gas-liquid coexistence envelopes. The chain monomers are spherical beads that interact via a square-well potential with all other beads. Bonded beads are connected by strings chosen so that bond length varies between 1.01sigma and 1.05sigma (where sigma is the hard sphere diameter). The stiffness of the molecules is controlled via a potential between beads separated by two bonds; this potential restricts the distance between these beads to be between 2.02sigma and 2.1sigma. The vapor-liquid coexistence and IN coexistence curves are obtained using computer simulations. An IN transition is found for 10相似文献   

15.
Polystyrene/polystyrene latex interpenetrating polymer networks (IPNs) were prepared by seeded emulsion polymerzation of styrene–divinylbenzene mixtures in crosslinked monodisperse polystyrene seed latexes. The resulting latexes comprised uniform nonspherical particles, which were formed by separation of the second-stage monomer from the crosslinked seed network during swelling and polymerization. The kinetics of phase separation were investigated by examining the changes in particle morphology using optical microscopy, which revealed that the phase separation was induced by the relaxation of the polymer chains before polymerization began and was enhanced by increased conversion. The thermodynamics of phase separation were investigated by analysis of the free-energy changes during swelling and polymerization, and the phase separation was described by a nucleation-and-growth mechanism. The results of this study have been applied to the design and synthesis of a series of uniform nonspherical particles of different morphology.  相似文献   

16.
The local conformation and storage of energy in individual polymer chains during a deformation of a bulk polymer sample are examined by the computer simulation of a relatively simple model. It is shown that as the interaction between the chain atoms and surrounding medium increases, rotational angle motion is suppressed during the deformation, and large amounts of energy are stored in backbone bond angle and bond length distortions. The relationship of this phenomena to Tg and the implications for chain relaxation are discussed.  相似文献   

17.
Here we demonstrate a conceptually new approach, the parallel-like bulk heterojunction (PBHJ), which maintains the simple device configuration and low-cost processing of single-junction BHJ cells while inheriting the major benefit of incorporating multiple polymers in tandem cells. In this PBHJ, free charge carriers travel through their corresponding donor-polymer-linked channels and fullerene-enriched domain to the electrodes, equivalent to a parallel-like connection. The short-circuit current (J(sc)) of the PBHJ solar cell is nearly identical to the sum of those of the individual "subcells", while the open-circuit voltage (V(oc)) is between those of the "subcells". Preliminary optimization of the PBHJ devices gives improvements of up to 40% in J(sc) and 30% in overall efficiency (η) in comparison with single-junction BHJ devices.  相似文献   

18.
Polystyrene nanocomposites, being a combination of nanoclay-attached and free polystyrene chains were prepared using in situ atom transfer radical polymerization. Subsequently, they were electrospun to form fibers with diameter varying from 450?C700 nm according to scanning electron microscopy data; in addition, the transmission electron microscopy and x-ray diffraction analysis revealed that nanoclay layers were oriented along the nanofiber axis during the electrospinning process. Molecular weight of the extracted free polymer chains from the nanocomposites is higher than the attached chains. However, Anchored chains are characterized by higher polydispersity index in comparison with the free ones. Polydispersity index of polymer chains increases by the addition of nanoclay. Thermogravimetric analysis results shows that increasing clay content leads to a decrease in the quantity of polymer chains attached to the clay surface.  相似文献   

19.
The issue of chain confinement in nanocomposites remains largely unanswered because experimental systems are plagued by additional complicating variables such as particle–polymer interactions and free volume increases brought upon by the addition of the particles. Using computer simulation of high length chain polymers, we show that simple excluded volume interactions between polymer and nanoparticles lead to a wealth of changes in the diffusion coefficient and entanglement density of the chains. This opens up the possibility of using nanoparticles for tuning polymer properties, such as toughness, melt viscosity, and transient rubberlike behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 687–692, 2010  相似文献   

20.
The calculations of the mean-square radius of gyration for more than thirty sorts of polymer chains are reviewed on the basis of a unified approach. A general expression of the mean-square radius of gyration was developed for polymer chains with side groups and/or heteroatoms. It consists of two parts. The first part is the mean-square radius of gyration of a model chain, in which every side group, R, was considered to be located in the centroid of the substituent flanking the related skeletal atom, and the second one is the total contribution of the square radius of gyration of every substituent around its centroid. Numerical calculations showed that the logarithmic relationship between the mean-square radius of gyration and the degree of polymerization becomes linear when x is greater than 100, and the dependence of the mean-square radius of gyration on the molecular weight can be expressed by the general formula 〈S2〉 = aMb, which was supported by a number of experimental measurements. A comparison of our expression for the mean-square radius of gyration with that reported by Flory was made. The difference is obvious in the range of lower molecular weight, and gradually declines with increasing degree of polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号