首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, two varieties of potato flour (Ágata and IAPAR Cristina) were studied by simultaneous thermogravimetry–differential thermal analysis (TG–DTA), differential scanning calorimetry (DSC), rapid viscoamylographic analysis (RVA), and microscopy (NC-AFM) that were compared with conventional physico-chemical analysis, according different granulometry of each flour. Flours of IAPAR Cristina showed higher levels of starch, fiber, and phosphate and it showed higher thermal stability (TG–DTA), as well as higher pasting temperature and viscosity (RVA), and lower enthalpy of gelatinization (DSC) in the two granulometries. Flours of Agata showed higher gelatinization enthalpy (DSC) and lower pasting temperature (RVA). Atomic force microscopy—non contact method (NC-AFM), was important to check for protrusions and pores of the flour surfaces. The differences between cultivars can be attributed mainly to the genotypes and growth conditions of the tubers, which can modify the flour properties.  相似文献   

2.
Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets’ starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets’ starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.  相似文献   

3.
大米淀粉糊化过程的光谱分析   总被引:3,自引:0,他引:3  
采用衰减全反射傅立叶变换红外光谱仪跟踪测定了不同品种大米淀粉的糊化过程,同时与X-射线衍射仪测定的淀粉结晶度相对比,研究了淀粉颗粒内结晶结构在糊化过程中变化的详细情况.利用红外光谱仪计算出天然大米淀粉及其在糊化过程中各个阶段代表结晶区特征的1047cm-1和代表非晶区特征的1022cm-1两处红外吸收峰强度的比值.结果表明,天然淀粉的结晶区主要由支链淀粉侧链的双螺旋结构所形成;在加热过程中淀粉的结晶结构被破坏,并且直链淀粉含量越高,其结晶结构在糊化过程中破坏越慢,说明直链淀粉能抑制淀粉结晶结构的破坏.利用X-射线衍射仪测定了大米淀粉糊化过程各个阶段的结晶度,进一步验证了淀粉的结晶结构在糊化过程中的损失.虽然,两种测定方法对"结晶度"的定义不同,但对于淀粉结晶程度的测定具有相关性和可比性,能为研究淀粉的糊化行为提供有利的补充信息.  相似文献   

4.
Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7–35.4% to 2.7–20%), increased the damage starch (from about 0.5–1.6% to 2.4–23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.  相似文献   

5.
C-type starches with different proportions of A- and B-type crystallinities have different intensities and crystallinities of X-ray diffraction peaks. In this study, the intensities and crystallinities of X-ray diffraction peaks, molecular components and heat properties of C-type starches were investigated in seven sweet potato varieties, and their relationships were analyzed. The intensity and crystallinity of a diffraction peak at 5.6° were significantly positively correlated to the DP6-12 branch-chains of amylopectin and significantly negatively correlated to the true amylose content (TAC) determined by concanavalin A precipitation, gelatinization temperature, gelatinization enthalpy, water solubility at 95 °C, and pasting temperature. The intensity of diffraction peaks at 15° and 23° were significantly positively correlated to the gelatinization temperature and pasting temperature and significantly negatively correlated to the pasting peak viscosity. The significantly positive relationships were detected between the crystallinity of a diffraction peak at 15° and the DP13-24 branch-chains of amylopectin, gelatinization conclusion temperature and water solubility, between the crystallinity of diffraction peak at 17–18° and the TAC, gelatinization onset temperature, water solubility and pasting temperature, between the crystallinity of a diffraction peak at 23° and the gelatinization conclusion temperature and pasting peak time, and between the total crystallinity and the TAC, gelatinization conclusion temperature, water solubility and pasting temperature. The score plot of principle component analysis showed that the molecular components and heat property parameters could differentiate the C-type starches and agreed with their characteristics of X-ray diffraction peaks. This study provides some references for the utilizations of C-type starches.  相似文献   

6.
This study was carried out to understand and establish the changes in physicochemical properties of starch extracted from Chinese yam (Dioscorea opposita Thunb.) after acetylation. Yam starch acetates with different degrees of substitution (DS) were prepared by the reaction of yam starch with glacial acetic acid/acetic anhydride using sulfuric acid as the catalyst. Their formation was confirmed by the presence of the carbonyl signal around 1750 cm-1 in the Fourier transform infrared (FT-IR) spectra. The thermal behavior of the native starch and starch acetate were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results reveal that the starch acetates are more thermally stable than the native starch. The starch esters showed 50% weight loss at tem- peratures from 328℃ to 372 ℃ , while the native starch underwent 50% weight loss at 325℃ . The glass transition temperature (Tg) of the starch decreased from 273℃ to 226℃. The X-ray diffraction (XRD) patterns could be classified as typical of the C-type for yam starch. X-ray diffraction also showed the loss of the ordered C-type starch crystalline structure and the degree of crystallinity of starch de- creased from 36.10% to 10.96% with the increasing DS. The scanning electron microscopy (SEM) sug- gested that the most of the starch granules disintegrated with many visible fragments with the in- creasing DS.  相似文献   

7.
Tapioca and potato starches were used to investigate the effect of heat–moisture treatment (HMT; 95–96 °C, 0–60 min, 1–6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47–63% and 0–36%, and those of HMT potato starch were 89–92% and 63–94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.  相似文献   

8.
Comparison of A and B starch granules from three wheat varieties   总被引:2,自引:0,他引:2  
Zeng J  Li G  Gao H  Ru Z 《Molecules (Basel, Switzerland)》2011,16(12):10570-10591
Three starches from the wheat varieties AK58, ZM18 and YZ4110 were separated into large (A) and small (B) granules, which were characterized structurally and evaluated for their functional properties. SEM results showed that the size of A-granules from ZM18 and YZ4110 were about the same, but the sizes of A-granules and B-granules from AK58 were larger than those of ZM18 and YZ4110. FTIR spectra showed that all the samples exhibited a similar pattern, with seven main modes with maximum absorbance peaks near 3,500, 3,000, 1,600, 1,400, 1,000, 800, 500 cm-1. The B-granules of ZM18 and YZ4110 had less amylose content, although the difference among the total amylose contents of the three unfractionated starches was not significant. X-ray diffraction (XRD) patterns showed predominantly A-type crystallinity for all the starches. The A-granules showed sharper XRD patterns than the other starches. DSC analysis showed that the A-granules had broader ranges of gelatinization temperatures than the B-granules from the same wheat variety. The gelatinization enthalpy (ΔH) of A-granules was higher than that of B-granules. AK58 exhibited the smallest enthalpy, while ZM18 showed the largest enthalpy. In pasting tests, the A-granule starch of AK58 had higher peak, final and setback viscosity, lower breakdown and pasting temperature, and the B-granule starch and unfractionated starch of AK58 had lower peak, breakdown, final and setback viscosity and higher pasting temperature than ZM18 and YZ4110.  相似文献   

9.
In order to explore the processing and application potential of Chinese yam starch, nine kinds of Chinese yam starch (GY11, GY5, GY2, GXPY, LCY, SFY, MPY, SYPY, ASY) from South China were collected and characterized. The chemical composition, rheological properties, thermal properties, and in vitro starch digestion were compared, and the correlation between the structure and processing properties of these yam starches was analyzed using Pearson correlation. The results show that GY2 had the highest amylose content of 28.70%. All the yam starches were similarly elliptical, and all the yam starch gels showed pseudoplastic behavior. Yam starches showed similar pasting temperatures and resistant starch content, but SYPY showed the largest particle size (28.4 μm), SFY showed the highest setback (2712.33 cp), and LCY showed the highest peak viscosity (6145.67 cp) and breakdown (2672.33 cp). In addition, these yam starches also showed different crystal types (A-type, B-type, C-type), relative crystallinity (26.54–31.48%), the ratios of 1045/1022 cm−1 (0.836–1.213), pasting properties, and rheological properties, so the yam starches have different application potentials. The rheological and pasting properties were related to the structural properties of starch, such as DI, Mw, and particle size, and were also closely related to the thermodynamic properties. The appropriate processing methods and purposes of the processed products of these yam starches can be selected according to their characteristics.  相似文献   

10.
The aim of the study was to assess the influence of replacing wheat flour with hazelnuts or walnuts, in various amounts, on the thermal and rheological properties of the obtained systems. The research material were systems in which wheat flour was replaced with ground hazelnuts (H) or walnuts (W) in the amount of 5%, 10%, and 15%. The parameters of the thermodynamic gelatinization characteristics were determined by the differential scanning calorimetry method. In addition, the pasting characteristics were determined with the use of a viscosity analyzer and the viscoelastic properties were assessed. Sweep frequency and creep and recovery tests were used to assess the viscoelastic properties of the tested gels. It was found that replacing wheat flour with nuts increased the values of gelatinization temperature, gelatinization, and retrogradation enthalpy, and the degree of retrogradation. The highest viscosity was characteristic of the control sample (2039 mPa·s), and the lowest for the paste with 15% addition of walnuts (1120 mPa·s). Replacing the flour with nuts resulted in a very visible reduction in the viscosity of such systems. In addition, gels based on the systems with the addition of H and W were weak gels (tan δ = G″/G′ > 0.1), and the values of G′ and G″ parameters decreased with the increased share of nuts in the systems. Creep and recovery analysis indicated that the systems in which wheat flour was replaced with hazelnuts were less susceptible to deformation compared to the systems with the addition of W.  相似文献   

11.
The use of chemically modified starches is widely accepted in various industries, with several applications. In this research, natural cassava starch granules were treated with standard sodium hypochlorite solution at 0.8, 2.0, and 5.0 g Cl/100 g starch. The native and modified starch samples were investigated by means of the following techniques: simultaneous thermogravimetry–differential thermal analysis, which allowed us to verify the thermal decomposition associated with endothermic or exothermic phenomena; and differential scanning calorimetry that was used to determine gelatinization enthalpy as well as the rapid viscoamylographic analysis that provided the pasting temperature and viscosity. By means of non-contact-atomic force microscopy method and X-ray powder patterns diffractometry, it was possible to observe the surface morphology, topography of starch granules, and alterations in the granules’ crystallinity.  相似文献   

12.
王静雯  吕雅文  尚亚卓  刘洪来 《应用化学》2022,39(11):1693-1702
大米淀粉颗粒粒径较小且均匀,在水中有较好的分散性,具有良好的成膜性并且可以在自然中降解,在食品包装、医用敷料及化妆品行业中有着广泛的应用。以大米淀粉为原料,NaOH为糊化剂,甘油为增塑剂,柠檬酸为交联剂和pH调节剂,采用流延法制备了淀粉膜。通过对淀粉颗粒的形貌观察及糊化温度、淀粉溶液的表观粘度及pH值测定、淀粉膜的力学性能、透光率及承载甘草酸二钾释放性能等的测定,研究了大米淀粉的糊化条件,柠檬酸、淀粉和甘油质量分数对淀粉膜性质的影响以及承载物质的释放情况。结果表明,大米淀粉呈光滑的多边形颗粒,直径为5~8 μm,在偏光显微镜下呈现马耳他十字结构,糊化温度范围为82.5~100.8 ℃。柠檬酸在淀粉成膜过程中会与淀粉分子相互作用,同时能够调节溶液的pH值以适应人体皮肤。淀粉质量分数越高,淀粉膜断裂伸长率越低,拉伸强度越高;甘油质量分数越高,淀粉膜断裂伸长率越高,拉伸强度越低。在甘油质量分数为3.0%时淀粉膜透光率最佳,结晶度最低。制备的淀粉膜能够承载且能高效释放抗炎物质甘草酸二钾,在护肤领域具有广泛的应用前景。  相似文献   

13.
This study aimed to utilize unripe green bananas obtained from those that were graded as unacceptable for export. Bread was selected as the product model for the application of banana flour. As carbohydrates and other functional active compounds make up the main composition of green bananas, unripe banana flour (UBF) was prepared and characterized. The chemical composition, physico-chemical properties, and functional properties of UBF, as well as its application in bread for wheat flour (WF) substitution at different levels, were investigated. Quality attributes of the bread were determined. High carbohydrate (89%), total dietary fiber (7%), ash (2%), potassium content and radical scavenging activity were found in UBF bread, while protein (15%) and fat contents (0.9%) were higher in WF bread (p < 0.05). Starch granules of different sizes and shapes (round, long and oblong) were observed in the starch from UBF bread. Solubility, swelling power, and the water absorption capacity of WF bread were greater than UBF bread (p < 0.05). The gelatinization enthalpy (ΔH) was 0.69 and 5.00 J/g for WF and UBF, respectively. The rapid viscoanalyzer (RVA) pasting profile showed that UBF bread had a higher pasting temperature, peak viscosity, breakdown, and final viscosity than WF bread (p < 0.05). Increasing the level of UBF caused an increase in bread hardness and a decrease in loaf volume (p < 0.05). We show that UBF can be considered a value-added product with health-promoting properties. The utilization of UBF as a functional food ingredient will benefit the consumer.  相似文献   

14.
Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10–50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work.  相似文献   

15.
Processing temperature,maze flour particle size,and level of water and sodium metabisulfite were varied during the preparation of maize noodles.Preheated to 90-95 ℃ a mixture of maize flour or meal,water(43%-45% moisture) and salt enabled the preparation of noodles using a pasta extruder.Maize flour with smaller particle size yielded better noodles than did maize meal.The addition of sodium metabisulfite enabled the production of noodles at lower processing temperatures; however,cooking losses increased.Processing maize flour with higher water absorption yielded noodles that required longer cooking time but with decreased losses.The functionalities of starch and protein in raw ingredients and in products were determined.Starch gelatinized and retorgraded during processing maize noodles,as indicated by changes in pasting viscosity curves.Maize proteins contributed to the increased viscosity of dough above 40 ℃.The increased integrity of cooked maize noodles,however,corresponded to the increased amounts of gelatinized and retrograded starch.  相似文献   

16.
Dioscoreae (Chinese name Shanyao), the rhizome of various species of genus Dioscorea opposita Thunb.(Dioscoreaceae), has been used as an important invigorant in traditional Chinese medicine (TCM) for many years1. Starch, the most abundant carbohydrate in …  相似文献   

17.
The influence of native lipids and additives of surface-active compounds on starch paste rheology was investigated. The aim of the study was to gain better understanding of mechanisms involved in starch gelatinization and how these structure changes of granules later affect rheological properties of pastes and gels. Starches from three main sources—potato, maize, and wheat—were tested; sodium dodecylsulfate, oleate, and benzalkonium chloride were employed as additives. Starch pasting was examined by a rheometer to get a viscosity profile, also pastes were analyzed by differential scanning calorimetry, for particle size using a light scattering technique. Results revealed that there was a competition between native lipids and added surfactants for amylose complexation. Complexes formed during gelatinization were strongly affecting granule swelling and dissolution of starch polymers, and viscosity of pastes was mainly dependent on the particle size of a disperse phase in the paste. Addition of strong ionic surfactants to cereal starches resulted in smaller granular remnants and, therefore, decreased viscosity, while the weak anionic surfactant promoted an increase in the particle size and paste viscosity for both cereal and tuber starches. The mechanism of the effect of surfactants on the particle size in pastes is discussed.  相似文献   

18.
Cowpeas are leguminous seeds widely produced and consumed in most developing countries of sub Saharan Africa. The aim of this study was to determine the physical, proximate, functional and pasting properties of flour obtained from gamma irradiated cowpea. Four cowpea cultivars were irradiated with gamma radiation at dose levels of 0.25, 0.5, 0.75, 1.0 and 1.5 kGy with the unirradiated cultivars serving as controls. The samples were hammer milled, sieved and stored at 4 °C for analysis. Physical, proximate, functional, pasting properties were determined using appropriate methods. In general, the irradiation dose applied to cowpea for insect control did not significantly affect the physical and proximate properties of the flour. However, significant increase (p<0.05) was achieved in paste bulk density, water and oil absorption capacities, foam capacities and least gelation concentrations of flour in general, which may be attributed to the irradiation. The radiation reduced the swelling power and water solubility index significantly. The peak temperature, peak viscosity and setback viscosity of the pastes were significantly (p<0.05) reduced while breakdown viscosity was significantly (p<0.05) increased by the radiation. It was established that the doses used on cowpea affected both the functional and pasting properties of the flour.  相似文献   

19.
半夏淀粉的理化特性   总被引:1,自引:0,他引:1  
研究了不同产地的4种半夏淀粉的理化特性,包括直链淀粉含量、膨胀度、溶解性、持水性、淀粉粒大小和形貌、结晶类型、热特性和糊化特性等。结果表明,这些半夏淀粉中直链淀粉含量为18.60%~23.91%;膨胀度21.53%~23.09%;溶解度11.5%~32.3%;持水性100.3%~119.0%。淀粉粒单粒球形,卵形或圆半球形,直径2~20μm,复粒由2~3个分粒组成,其结晶类型均为C型,结晶度15.0%~37.9%。用差示扫描量热仪测得的转变温度TO、TP和TC分别为71.58~77.75℃、83.03~83.84℃和89.41~90.99℃,热焓为4.316~5.809 J/g。用快速粘度分析仪测定了4种半夏淀粉的糊化特征值:峰值粘度、热糊粘度、冷糊粘度、稀懈值和回复值分别为149.5~226.2、97.7~127.2、141.8~194.3、50.4~99.0和44.2~67.2 RVU。糊化温度77.8~79.9℃,峰值时间8.3~8.7 min。  相似文献   

20.
水溶性N-(2-羧基苯甲酰基)化壳聚糖的合成   总被引:3,自引:1,他引:2  
壳聚糖(β-(1,4)-2-氨基-2-脱氧-D-葡聚糖)是甲壳素脱乙酰化反应生成的一种线性聚合物,无毒、可生物降解、并有良好的成膜性和生物相容性,近年来已在水处理、医药、食品、化妆品、农业等领域显示了其独特的应用价值。但是,因分子内和分子间氢键的作用,壳聚糖只能溶于酸和酸  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号