首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
高能量、大功率中性束注入是对大型受控核聚变装置进行等离子体加热和电流驱动的有效手段。因此势必要发展在高能量下仍具有较高中性转换效率的负离子-中性束注入器。  相似文献   

2.
基于射频负离子源的中性束注入系统是高功率长脉冲(稳态)运行中性束注入系统的最佳选择。负离子源是中性束注入系统的核心部件,需要实现稳定的负离子束引出和加速。在负离子源的运行过程中引出负离子电流会发生变化,尤其在长脉冲、高能量运行条件下会更加明显,因此无法满足稳定运行的要求。为了实现引出束流的稳定引出,开展了束流反馈控制研究,研发了一套基于射频功率调节的束流反馈控制系统,并将束流反馈控制系统应用在射频负离子源测试平台,开展了束流反馈控制测试。测试结果表明束流反馈控制系统能够实现对束流的实时反馈调节以获得束流的稳定引出,验证了基于射频功率调节的束流反馈控制的可行性,为高功率射频负离子源的研制提供支持。  相似文献   

3.
采用蒙特卡罗程序NUBEAM对EAST NBI上的中性束注入角度(中性束系统中心线与注入窗口轴线的夹角)进行了分析。讨论了中性束注入角度对电流驱动效率、加热效率和束的穿透功率的影响,对EAST NBI系统选取了一个最优的注入角度。模拟结果表明:对EAST NBI系统,在典型的EAST实验参数和实际工程允许的范围内,19.5°是最优的注入角度。在此注入角度下,可以通过增大等离子体密度的方法来进一步提高加热效率和电流驱动效率,并减少束的穿透功率。  相似文献   

4.
强流离子源是托卡马克中性束注入器的核心部件,为了满足未来对高能量离子束中性化效率的要求,负离子源成为中性束注入系统的首选。光腔衰荡光谱(cavity ring-down spectroscopy,CRDS)是一种超高灵敏探测吸收光谱技术。在强流负离子源中,利用氢负离子的光致剥离过程,CRDS可以用来测量氢负离子的绝对积分密度。与激光光致剥离法与光学发射光谱法相比,CRDS具有不受电磁干扰、不依赖等离子体参数、测量精度高等优点。强流离子源负离子密度测量所用CRDS系统由激光器、光学谐振腔、光电探测器和数据采集系统四部分组成。本文根据CRDS测量氢负离子密度的原理,详细推导了氢负离子密度的计算方法,给出了氢负离子密度测算表达式;然后,结合强流离子源实验室应用的具体情况,分析了各部分装置的选择原则与注意事项;最后,介绍了CRDS技术在德国马克斯-普朗克等离子体物理研究所、日本国立聚变科学研究所、意大利Consorzio RFX研究所强流负离子源研究中的应用情况。实验结果表明,源腔气压、源功率等源参数会影响氢负离子密度;铯的注入可以将氢负离子密度从1016 m-3量级提高到1017 m-3量级;同时,日本NIFS的实验结果证明氢负离子密度与引出电流呈线性关系。  相似文献   

5.
负离子源中性束注入(NNBI)系统是聚变堆主机关键系统综合研究设施(CRAFT)的组成部分,其目标是开展NNBI相关的科学与工程问题研究,为未来聚变堆NNBI系统的研制与运行积累经验。加速器的束流光学特性决定着最终形成束流的发散性,进而影响着束流在加速器和束线中的传输效率,这对NNBI系统的高功率、高能量、长脉冲运行至关重要。为此,采用IBSimu离子束流模拟程序对目前CRAFT NNBI的400 keV加速器电极系统的物理设计进行束流光学特性分析与评估。目前该套电极结构的设计与ITER负离子源类似,束发散的计算结果满足设计要求。在负离子束流密度较高时(100~300 A/m2范围内),具有更小束发散角;引出距离(5~7 mm范围内)和加速距离(88~110 mm范围内)的适当增加,也呈现出束发散角下降趋势。  相似文献   

6.
受控聚变研究领域取得的重要进展是与中性束技术的发和大功率快粒子中性束注入密切相关的。中性束注入是等离子体辅助加热、非感应电流驱动、加料和控制等离子体电流分布的主要技术手段。  相似文献   

7.
中性束注入(NBI)是托卡马克装置重要的辅助加热与电流驱动手段,中性原子的离化是决定中性束的加热(能量和粒子沉积剖面)和电流驱动效率的关键环节。通常情况下,利用背景等离子体参数与中性束参数模拟计算快的中性粒子与等离子体的离化,即中性束沉积过程,进而分析托卡马克中性束加热和电流驱动效果。束发射光谱是高能中性粒子注入等离子体后,与等离子体的电子、离子发生碰撞激发,中性粒子退激发过程中产生的一系列特征谱线,其束发射光谱强度受等离子体密度、温度、束能量、束密度等因素影响,可以利用束发射光谱强度变化研究中性束的衰减特性。在EAST托卡马克上通过实验测量中性束粒子与等离子体碰撞激发的光谱强度,分析得到了中性束在不同等离子体密度以及不同中性束能量下的衰减特性,并采用主动束光谱仿真与数值分析软件(SOS)进行了相应的模拟计算,研究表明实验测量与模拟计算结果两者具有较好的一致性,这验证了通过实验测量束发射光谱获取中性束衰减特征的可行性。  相似文献   

8.
为了满足中国核聚变工程实验堆(CFETR)对等离子体加热和电流驱动的要求,从总体布局、束传输 系统、束源系统三方面进行了中性束注入系统的概念设计。利用参数计算的方法,根据聚变等离子体的要求明确 了中性束注入系统的性能指标和基本布局;利用束传输空间分布程序评估了束传输性能,确定了各功能部件的空 间布局结构;在此基础上,确定了束源系统的性能指标和引出系统布局方式,结合当前研发进展,明确了束源的 基本技术方案。由此完成了中性束注入系统参数指标、束传输关键尺寸、束源性能指标等设计要求,为后续工程 设计奠定了基础。  相似文献   

9.
采用交叉束方法 ,利用负离子源产生的 3— 19keV的Li- 和Na- 轰击惰性气体靶He ,Ne和Ar ,通过静电偏转和位置灵敏探测器区分碰撞后中性粒子束和负离子束 ,测量了不同碰撞系统的中性粒子计数与相应入射负离子计数的比值R(E) ,并得到R(E)与入射负离子能量、负离子种类和靶原子种类的关系. The count ratios R of the neutralized atoms of final state to projectiles Li -and Na -in collision with He, Ne and Ar are measured in the energy range of 3-19 keV. It is found that the count ratios R increase slowly with the collision energy in whole experimental energy range for He, Ne and Ar. For Li -→He, Ne, Ar Collisions, R(He)≈R(Ar)>R(Ne), and for Na -→He, Ne, Ar Collisions, R(He)>R(Ar)> R(Ne).  相似文献   

10.
中性束注入是磁约束核聚变能研究中重要的辅助加热手段。大面积负离子源是中性束注入系统的核心部件。在负离子源工作过程中,负离子的电子结合能非常小(约0.75e V),极易被高能电子破坏。为此需要设计过滤磁场降低电子温度,减少负离子的损失,同时也可以减少伴随引出的电子。根据大面积负离子束源的机械结构,分别设计了永磁体产生过滤磁场和利用等离子体电极(PG)电流产生磁场两种磁过滤器结构;通过有限元算法对产生的过滤磁场进行模拟分析和优化,完成了大面积负离子束源过滤磁场的研制。在负离子束源测试平台开展实验测试,引出区电子温度从5eV降至1eV。这个结果初步验证了大面积负离子束源的过滤磁场的性能,为大面积负离子束源的研制提供了支持。  相似文献   

11.
中性束注入是等离子体加热和电流驱动的重要方式之一,对EAST中性束注入的精确模拟对未来物理实验至关重要.采用ONETWO和NUBEAM程序模拟4MW、80keV中性束同向注入,不同的等离子体密度剖面导致不同的电子和离子加热、穿透功率损失、束驱动电流以及中子发射等.等离子体密度在以上的物理参数的演化中起着重要的作用.对EAST两种密度方案下中性束注入的效果进行了分析和讨论,并对未来中性束实验提供了一些预言性的建议和方案.  相似文献   

12.
对EAST中性束反向注入过程中等离子体加热和电流驱动进行了实验研究,并采用了美国普林斯顿大学等离子体物理实验室开发的TRANSP 程序对高功率中性束注入过程中能量热输运进行了分析。结果表明,中性束注入可有效提高本底等离子体温度,产生束驱动非感应电流,提高等离子体旋转以及有效改善等离子体约束。  相似文献   

13.
对EAST中性束反向注入过程中等离子体加热和电流驱动进行了实验研究,并采用了美国普林斯顿大学等离子体物理实验室开发的TRANSP程序对高功率中性束注入过程中能量热输运进行了分析.结果表明,中性束注入可有效提高本底等离子体温度,产生束驱动非感应电流,提高等离子体旋转以及有效改善等离子体约束.  相似文献   

14.
采用1.5维的放电模拟程序TSC结合蒙特卡罗程序NUBEAM对使用中性束加热的EAST放电全过程进行数值模拟研究。分析了典型实验参数条件下的中性束的加热及电流驱动效果。讨论了不同背景等离子体密度对中性束加热及电流驱动效果的影响。模拟结果表明,中性束的注入使得背景等离子体温度有了较大幅度的提升,并能驱动出一定份额的非感应电流;适当降低背景等离子体密度有助于提高中性束的加热及电流驱动效率。  相似文献   

15.
HT—6M装置中性束注入加热初步实验   总被引:1,自引:1,他引:0  
一、引 言 在受控核聚变领域中,中性束注入是加热高温等离子体最有效方法之一。目前,几乎所有托卡马克实验中所获得高的温度,都是在有中性束注入情况下实现的。而用中性束注入加热托卡马克等离子体在国内尚属首次。 中性束注入系统的关键是离子源引出高能离子束,经过中性化室将高能离子束转变成高能中性束,并注入到装置中去加热等离子体,以提高等离子体的离子温度。 该系统涉及技术领域广,工程量大,经过多年艰苦努力,HT-6M装置中性束注入系统,终于进入实验阶段。本文介绍当50kW中性束注入HT-6M装置后,等离子体温度净增约80eV。  相似文献   

16.
研究了在托卡马克装置中中性束注入时快离子自举电流的产生。利用快离子分布函数在两小增量δ=ρp/a (ρp是极向拉莫尔半径,a是小半径)和δ*=τB/τs(τB是俘获粒子反弹周期,τs是慢化时间)下进行展开的方法求解漂移动力学方程;给出了快离子自举电流的一般表达式。计算了圆截面大纵横比托卡马克中快离子自举电流密度分布和总的快离子自举电流的大小,研究表明:在中性束垂直注入时快离子自举电流约占总电流10%;自举电流的大小既敏感地依赖于中性束注入的角度——平行注入时较小、接近垂直时迅速增大,同时也较强的依赖于快离子的产生速度与临界速度的比值,即vb/vc,而vb2∝E(束能量);自举电流的大小随注入束能量的增加而迅速增大。  相似文献   

17.
目前,一些科学和技术部门广泛地应用中性束技术,特别是在受控核聚变研究中,采用强流中性束注入是维持和加热等离子体的主要方法之一。可用两种方法获得中性束,其一是正离子束通过靶物质捕获电子,其二是用靶物质剥离负离子束的电子。我们曾用30—100keV氢离子束与气体靶、碱金属蒸气靶相互作用获得中性束,并进行了测量。本文用氢离子束通过等离子体靶获得中性束,进一步探索提高中性粒子产额的方法。初步测定了氢离子束与氩等离子体靶作用的电荷交换中性化效率,并对中性化机理作初步探讨。  相似文献   

18.
采用数值模拟的方法研究中性束辐射光谱(BES)对开展与中性束相关的光谱诊断与实验有重要的指导意义.本文在HL-2A托卡马克装置上利用ADAS数据库(Atomic Data and Analysis Structure,1998)计算有效束辐射系数和有效束衰减系数,分析了束辐射光谱强度与等离子体运行参数和中性束参数的关系,并在不同的中性束注入能量、等离子体密度分布和等离子体温度分布的情况下,获得了束辐射光谱强度的空间分布.在ne=2×1013 cm< 关键词: 中性束 束辐射光谱 束衰减  相似文献   

19.
中性束注入是等离子体加热和电流驱动的最有效方法之一。中性束注入的三个基本过程为:离子束的产生,离子束的中性化和中性束的传输,其中,离子束的中性化是关键环节之一。对于EAST-NBI气体中性化室而言,中性化室内气体靶厚度会直接影响离子束的中性化效率,而且还会进一步影响到中性束的传输效率。基于多普勒频移效应,提出了一种新的诊断气体靶厚度的方法,并且已经被应用于EASTNBI测试平台上。该方法主要是基于中性束的束成分随气体靶厚度的演化过程,利用中性束发射Dα光谱线强度完成计算。因此,它被应用于中国科学院等离子体物理研究所EASTNBI装置上。在中性化室出口处的观测窗口上进行测量,在束能量为40~65 keV时,气体靶厚度值为(0.16~0.22)×1016 cm-2,随着引出束流的变化,气体靶厚度随之改变。根据质量守恒定律,对中性化室内的气体靶厚度进行一个粗略的估算,估算的结果与测量的结果基本保持一致,从而证明了该诊断方法的合理性。综上,实验结果表明,该种基于多普勒频移效应的光谱诊断法可以被用于测量中性化室内的气体靶厚度。  相似文献   

20.
对EAST装置在相同束放电参数不同等离子体电流平台下开展的束反向注入实验进行了比较分析,并利用NUBEAM程序分析了不同的等离子体电流放电平台对束电流驱动、束功率沉积、束功率沉积分布及束能量损失的影响,以此来寻求优化的注入本底等离子体参数。结果表明,较高的电流平台更有利于束与等离子体的作用以及更有效提高本底等离子体温度、束驱动电流及等离子体旋转,更有效改善等离子体约束品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号