首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The potential use of biomass of Aeromonas hydrophila for biosorption of chromium from aqueous solution was investigated. The variables (pH, initial Cr(VI) concentration, biomass dose, and temperature) affecting process were optimized by performing minimum number of experimental runs with the help of central composite design. The results predicted by design were found to be in good agreement (R 2 = 99.1%) with those obtained by performing experiments. Multiple regression analysis shows that uptake decreases with increase in pH and biomass dose, whereas it increases with increase in temperature and concentration. The maximum removal of Cr(VI) predicted by contour and optimization plots was 184.943 mg/g at pH 1.5, initial Cr(VI) concentration 311.97 mg/L, temperature 60 °C, and biomass dose 1.0 g. The removal of Cr(VI) was governed by adsorption of Cr(VI) as well as its reduction into Cr(III), which further gets adsorbed. The sorption capacity of biomass was calculated from experimental data using Langmuir sorption model and was found to be 151.50 mg/g at 40 °C and pH 1.5, which is comparable to other biosorbents. In addition to this, Dubinin–Radushkevich model was applied, and it was found that nature of sorption was chemisorption.  相似文献   

2.
Sorption of thorium (IV) on goethite was investigated as a function of contact time, pH, ionic strength, anions, solid-to-liquid ratio (m/V) and Th(IV) concentration using batch technique. The results showed that the sorption of Th(IV) was strong pH-dependence, and increased from ~10 to ~100% over the pH range of 2.0–4.0, and then kept a constant level in the higher pH range. The sorption of Th(IV) increased with increasing m/V and independent of ionic strength. It was clear that phosphate and FA significantly enhanced Th(IV) sorption on goethite. The sorption and desorption isotherms were investigated at pH 2.90 ± 0.05 and analyzed with Freundlich and Langmuir models, respectively. Compared to Langmuir model, Freundlich model could fit the experimental data better, according to the high relative coefficients.  相似文献   

3.
Lessonia nigrescens and Lessonia trabeculata kelps have been tested for the sorption of mercury from aqueous solutions. A pretreatment (using CaCl2) allowed stabilizing the biomass that was very efficient for removing Hg(II) at pH 6–7. Sorption isotherms were described by the Langmuir equation with sorption capacities close to 240–270 mg Hg g−1 at pH 6. The temperature had a negligible effect on the distribution of the metal at equilibrium. The presence of chloride anions had a more marked limiting impact than sulfate and nitrate anions. The uptake kinetics were modeled using the pseudo-second-order equation that fitted better experimental data than the pseudo-first-order equation. The particle size hardly influenced sorption isotherms and uptake kinetics, indicating that sorption occurs in the whole mass of the biosorbent and that intraparticle mass transfer resistance was not the limiting rate. Varying the sorbent dosage and the initial metal concentration influenced the equilibrium, but the kinetic parameters were not drastically modified. Metal can be eluted with hydrochloric acid, citric acid, or acidic KI solutions.  相似文献   

4.
Equilibrium, kinetics and thermodynamic aspects of sorption of Promethazine hydrochloride (PHCl) onto iron rich smectite (IRS) from aqueous solution were investigated. The effect of pH on sorption of PHCl onto IRS was also found out. Experimental data were evaluated by using Langmuir, Freundlich and Dubinin–Raduschkevich (DR) isotherm equations. Freundlich and DR equations provided better compatibility than Langmuir equation. Besides, it was determined that the maximum sorption of PHCl takes place at about pH 5. From kinetic studies, it was obtained that sorption kinetics follow pseudo-second-order kinetic model for PHCl sorption onto IRS. When thermodynamic studies are concerned, the values of activation energy (Ea), ΔG°, ΔH° and ΔS° were obtained. ΔG° values are in the range of −8.84 and −9.45 kJ mol−1 indicating spontaneous nature of physisorption. The negative value of the ΔH° (−3.20 kJ mol−1) indicates exothermic nature of adsorption. FTIR analysis and SEM observations of IRS and PHCl adsorbed IRS were also carried out. Sorption experiments indicate that IRS may be used effectively for the adsorption of PHCl.  相似文献   

5.
Batch sorption experiments were performed to remove Eu(III) ions from aqueous solutions by using attapulgite under ambient conditions. Different experimental conditions, such as contact time, solid content, foreign ions, pH, ionic strength, fulvic acid and temperature, have been investigated to study their effect on the sorption property. The results indicated that the sorption of Eu(III) onto attapulgite was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 8.9 to 90% at pH ranging from 2 to 6 in 0.01 mol/L NaNO3 solution. The Eu(III) kinetic sorption on attapulgite was fitted by the pseudo-second-order model better than by the pseudo-first-order model. The sorption of Eu(III) onto attapulgite increased with increasing temperature and decreasing ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms, and the results indicated that the Freundlich model simulated the data better than the Langmuir model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were determined from the temperature dependent isotherms at 298.15, 318.15 and 338.15 K, and the results indicated that the sorption reaction was an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Eu(III) from aqueous solutions.  相似文献   

6.
To measure dermal exposure of a non-agricultural occupationally exposed population to pesticides, a new method has been developed for analysis of 13 pesticides from different classes (fungicides, herbicides, insecticides) on dermal patches. The method includes extraction of the patches and analysis of the pesticides by GC–MS and/or HPLC–fluorescence. Water-soluble pesticides (glyphosate and glufosinate) on patches were ultrasonically extracted twice with ultra-pure water for 10 min and analysed by HPLC–fluorescence after derivatisation with FMOC. Organic-soluble pesticides (bifenthrin, cyprodinil, difufenicanil, fludioxonil, oxadiazon, pyriproxyfen, clopyralid, 2,4-D, fluroxypyr, 2,4-MCPA, and triclopyr) were extracted ultrasonically twice for 10 min with 70:30 dichloromethane–acetonitrile and analysed by GC–MS directly or after derivatisation with N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide. Detection limits varied between 3 and 4 μg L−1 for water-soluble pesticides and between 1 and 10 μg L−1 for organic-soluble pesticides.  相似文献   

7.
In order to gain biosorbent that would have the ability to bind cesium ions from water solution effectively, potassium nickel hexacyanoferrate(II) (KNiFC) was incorporated into the mushroom biomass of Agaricus bisporus. Cesium sorption by KNIFC-modified A. bisporus biosorbent was observed in batch system, using radiotracer technique using 137Cs radioisotope. Kinetic study showed that the cesium sorption was quite rapid and sorption equilibrium was attained within 1 h. Sorption kinetics of cesium was well described by pseudo-second order kinetics. Sorption equilibrium was the best described by Freundlich isotherm and the distribution coefficient was at interval 7,662–159 cmg−1. Cesium sorption depended on initial pH of solution. Cesium sorption was very low at pH0 1.0–3.0. At initial pH 11.0, maximum sorption of cesium was found. Negative effect of monovalent (K+, Na+, NH4 +) and divalent (Ca2+, Mg2+) cations on cesium sorption was observed. Desorption experiments showed that 0.1 M potassium chloride is the most suitable desorption agent but the complete desorption of cesium ions from KNiFC-modifed biosorbent was not achieved.  相似文献   

8.
Sorption of U(VI) from aqueous solution to decarbonated calcareous soil (DCS) was studied under ambient conditions using batch technique. Soil samples were characterized by XRD, FT-IR and SEM in detail and the effects of pH, solid-to-liquid ratio (m/V), temperature, contact time, fulvic acid (FA), CO2 and carbonates on U(VI) sorption to calcareous soil were also studied in detail using batch technique. The results from experimental techniques showed that sorption of U(VI) on DCS was significantly influenced by pH values of the aqueous phase, indicating a formation of inner-sphere complexes at solid–liquid interface, and increased with increasing temperature, suggesting the sorption process was endothermic and spontaneous. Compared to Freundlich model, sorption of U(VI) to DCS was simulated better with Langmuir model. The sorption equilibrium could be quickly achieved within 5 h, and sorption results fitted pseudo-second-order model well. The presence of FA in sorption system enhanced U(VI) sorption at low pH and reduced U(VI) sorption at high pH values. In absence of FA, the sorption of U(VI) onto DCS was an irreversible process, while the presence of FA reinforced the U(VI) desorption process reversible. The presence of CO2 decreased U(VI) sorption largely at pH >8, which might due to a weakly adsorbable formation of Ca2UO2(CO3)3 complex in aqueous phase.  相似文献   

9.
Sorption of Sr on five Slovak bentonites of deposits has been studied with the use of batch technique. In the experiments there have been used natural, chemically modified and irradiated samples, in three different kinds of grain size. The pH influence on sorption of strontium on bentonites, pH change after sorption and influence of competitive ions have been studied. Distribution ratios have been determined for bentonite–strontium solution system as a function of contact time, pH and sorbate concentration. The data have been interpreted in term of Langmuir isotherm. The uptake of Sr has been rapid and the sorption of strontium has increased by increasing pH. The percentage sorption has decreased with increasing metal concentrations. The pH value after sorption for the natrificated forms of bentonite starts already in the alkaline area and moves to the higher values. For the natural bentonites the values occur in the neutral or in the acidic area. Sorption of Sr has been suppressed by presence of competitive cations as follows: Ba2+ > Ca2+ > Mg2+ > NH4 + > K> Na+. By sorption on natrificated samples colloidal particles and pH value increase have been formed. The bentonite exposure as a result of interaction of γ-rays has led to expansion of the specific surface, increasing of the sorption capacity and to the change in the solubility of the clay materials.  相似文献   

10.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

11.
The sorption of Pu(IV), polymeric Pu(IV), Pu(V) and Pu(VI) from the 0.1 M NaClO4 solution onto multiwalled carbon nanotubes was investigated. The kinetic study of the sorption process have shown that the polymeric Pu(IV) has the highest sorption rate, while decrease of sorption rate for plutonium aqua-ions in the order Pu(VI) > Pu(IV) > Pu(V) was found. Strong dependence of sorption kinetics of ionic plutonium species on pH was shown, in contrast to polymeric species, that were shown to quantitatively sorb (99%) in the wide pH range (pH 2–10). Two different sorption mechanisms for ionic and polymeric plutonium species were proposed: on the bases of sorption isotherms chemisorptions of plutonium aqua-ions onto carbon nanotubes and through intermolecular interaction for the polymeric plutonium species was defined. Distribution coefficients of plutonium in various oxidation states were found to increase with pH, showing the highest values for polymeric plutonium sorption (K d  = 2.4 × 105 mL g−1 at pH = 6).  相似文献   

12.
Batch experiments aimed at the sorption of Pb(II) onto peat were performed from an aqueous solution in both the absence and presence of common complexing agents (acetate or citrate). The influence of the initial pH of the solution, metal ion concentration and contact time on the sorption efficiency of Pb(II) was examined at ambient temperature (18 ± 0.5) °C for each experiment. The results showed that the presence of acetate improved the efficiency of the sorption process, while the presence of citrate in the aqueous solution decreased the efficiency of the Pb(II) sorption onto peat. The equilibrium data fitted well with the Langmuir isotherm model and confirmed the monolayer sorption of uncomplexed and complexed Pb(II) species onto peat. The values of maximum sorption capacities (q max) were 135.13 mg g−1 for Pb(II) complexed with acetate, q > 79.36 mg g−1 for uncomplexed Pb, q > 38.46 mg g−1 for Pb(II) complexed with citrate. The kinetics of Pb(II) sorption onto peat, in both the absence and presence of complexing agents, indicated a pseudosecond order mechanism. Analysis of IR spectra showed that carboxylic and hydroxyl groups had an important role in the binding process of Pb(II) species onto peat.  相似文献   

13.
Removal of uranium(VI) ions from acetate medium in aqueous solution was investigated using Lewatit TP260 (weakly acidic, macroporous-type ion exchange resin with chelating aminomethylphosphonic functional groups) in batch system. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The moving boundary particle diffusion model only fits the initial metal adsorption on the resin. The rate constant for the uranium sorption by Lewatit TP260 was 0.441 min−1 from the first order rate equation. The total sorption capacity was found to be 58.33 mg g−1 under optimum experimental conditions. Thermodynamic parameters (ΔH = 61.74 kJ/mol; ΔS = 215.3 J/mol K; ΔG = −2.856 kJ/mol) showed the adsorption of an endothermic process and spontaneous nature, respectively.  相似文献   

14.
The uranium(VI) biosorption by grapefruit peel was studied from aqueous solutions. Batch experiments was conducted to evaluate the effect of contact time, initial uranium(VI) concentration, initial pH, adsorbent dose, salt concentration and temperature. The equilibrium process was well described by the Langmuir, Redlich–Peterson and Koble–Corrigan isotherm models, with maximum sorption capacity of 140.79 mg g−1 at 298 K. The pseudo second order model and Elovish model adequately describe the kinetic data in comparison to the pseudo first order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The effective diffusion parameter D i and D f values were estimated at different initial concentration and the average values were determined to be 1.167 × 10−7 and 4.078 × 10−8 cm2 s−1. Thermodynamic parameters showed that the biosorption of uranium(VI) onto grapefruit peel biomass was feasible, spontaneous and endothermic under studied conditions. The physical and chemical properties of the adsorbent were determined by SEM, TG-DSC, XRD and elemental analysis and the nature of biomass–uranium (VI) interactions was evaluated by FTIR analysis, which showed the participation of COOH, OH and NH2 groups in the biosorption process. Adsorbents could be regenerated using 0.05 mol L−1 HCl solution at least three cycles, with up to 80% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of uranium (VI) bearing aqueous solutions.  相似文献   

15.
In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH < 8.0, whereas a negative effect was observed at pH > 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na+/H+ on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH.  相似文献   

16.
This work investigates the sorption of americium [Am(III)] onto kaolinite and the influence of humic acid (HA) as a function of pH (3–11). It has been studied by batch experiments (V/m = 250:1 mL/g, C Am(III) = 1 × 10−5 mol/L, C HA = 50 mg/L). Results showed that the Am(III) sorption onto the kaolinite in the absence of HA was typical, showing increases with pH and a distinct adsorption edge at pH 3–5. However in the presence of HA, Am sorption to kaolinite was significantly affected. HA was shown to enhance Am sorption in the acidic pH range (pH 3–4) due to the formation of additional binding sites for Am coming from HA adsorbed onto kaolinite surface, but reduce Am sorption in the intermediate and high pH above 6 due to the formation of aqueous Am-humate complexes. The results on the ternary interaction of kaolinite–Am–HA are compared with those on the binary system of kaolinite–HA and kaolinite–Am and adsorption mechanism with pH are discussed. Effect of different molecular weight of HA, with three HA fractions separated by ultrafiltration techniques, on the Am sorption to kaolinite were also studied. The results showed that the enhancement of the sorption of Am onto kaolinite at the acidic pH conditions (pH 3–4) was higher with HA fractions of higher molecular weight. Also, the Am sorption over a pH range from 6 to 10 decreased with decreasing molecular weight of HA.  相似文献   

17.
Attapulgite has been applied in the sorption of metal and radionuclide ions since its discovery. Herein, radionuclide Am(III) sorption onto attapulgite was carried out at 25 °C in 0.01 mol/L NaNO3 solutions. Effects of contact time, Am(III) initial concentration, pH, humic acid and temperature on Am(III) sorption onto attapulgite were investigated. The sorption of Am(III) increases with increasing contact time and reaches a maximum value within 24 h at different Am(III) initial concentration. The fast sorption velocity indicates that strong chemical sorption or strong surface complexation contributes to the sorption of Am(III) onto attapulgite under the experimental conditions. The experimental data can be described well by the pseudo-second-order rate model. The sorption of Am(III) onto attapulgite is strongly dependent on pH values and surface complexation is the main sorption mechanism. The presence of HA enhances the sorption of Am(III) onto attapulgite at pH < 8.5, whereas, at pH > 8.5, little effect of HA on Am(III) sorption is observed. The Langmuir, Freundlich and D-R models were used to simulate the sorption data at different pH values and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D-R models. The thermodynamic parameters indicates that the sorption of Am(III) onto attapulgite is an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Am(III) from aqueous solutions.  相似文献   

18.
In this work, Na-montmorillonite was used as a novel adsorbent for the sorption of Ni(II) from aqueous solutions. The sorption and desorption of Ni(II) on Na-montmorillonite was investigated as the function of pH, ionic strength, Ni(II) concentrations and temperature. The results indicated that the sorption of Ni(II) on Na-montmorillonite was strongly dependent on pH, ionic strength and temperature. The sorption of Ni(II) increases slowly from 22.1 to 51.4% at pH range 2–6.5, abruptly at pH 6.5–9, and at last maintains high level with increasing pH at pH > 9 in 0.1 mol/L NaNO3 solutions. The Ni(II) kinetic sorption on Na-montmorillonite was fitted by the pseudo-second-order model better than by the pseudo-first-order model and the experimental data implies that Ni(II) sorption on montmorillonite were mainly controlled by the film diffusion mechanism. The Langmuir, Freundlich and D–R models were used to simulate the sorption data at three different temperatures (298.15, 318.15 and 338.15 K) and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D–R models. The sorption–desorption isotherm of Ni(II) on montmorillonite suggested that the sorption is irreversible. The irreversible sorption of Ni(II) on montmorillonite indicates that montmorillonite can be used to pre-concentration and solidification of Ni(II) from large volumes of solution and to storage Ni(II) ions stably.  相似文献   

19.
The sorption properties are reported for chitosan and its cross-linked forms (chitosan-glutaraldehyde; CG) with some model agrochemical sorbates [pentachlorophenol (PCP), 2,4-dichlorophenol (2,4-DCP) and 2,4-dichlorophenoxy acetic acid (2,4-D), dicamba and carbofuran]. The CG cross-linked materials were prepared at variable C:G monomer mole ratios: 1:0.5 (CG1), 1:1 (CG2), (CG3). The sorbents were characterized using diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and a dye sorption method using phenolphthalein. The sorption studies were carried out in aqueous solution at pH 9 except for dicamba and carbofuran (pH 7). The isotherm results were evaluated by the Sips, Freundlich, and Langmuir models. The Sips model provided the “best-fit” results where the sorption capacity increased as the cross-linker content of the CG materials increased. The relative uptake for chitosan and its cross-linked forms adopted the following order: PCP > 2,4-DCP > 2,4-D. In the case of dicamba and carbofuran, the former had a higher sorptive uptake. The variable uptake of the sorbates were attributed to their relative lipophilicity where the main driving force of these solid-solution systems relates to hydrophobic effects, in accordance with the tunable physicochemical properties of the chitosan sorbent materials.  相似文献   

20.
Chronic exposure to Pb2+ above the 15-μg/L US Environmental Protection Agency action level for drinking water has been shown to cause a host of health problems in humans. Thus, it is important to study new methods available for the treatment and removal of Pb2+ from drinking water and wastewater, where elevated levels of heavy metals are found. Alginate-based beads represent one such possible method for heavy metal removal. The impact of alginate density on the equilibrium and kinetics of Pb2+ sorption onto hydrogel beads was investigated using Ca-alginate beads ranging from 1% to 8% (w/v) and exposed to Pb2+ concentrations ranging from 100 to 1,000 mg/L. When Ca-alginate beads were characterized using Fourier transform infrared analysis, the carboxylic acid groups of the mannuronate and guluronate residues in alginate were the primary functional groups that interacted with Pb2+. Hydration of Ca-alginate beads was also examined and found to decrease as Ca-alginate density increased. A positive correlation was observed between Ca-alginate hydration and Pb2+ sorption. Sorption of Pb2+ was fast, reaching equilibrium after approximately 4 h, and is well described by the Langmuir adsorption isotherm. Maximum sorption capacities for 1%, 4%, and 8% beads were 500 ± 100, 360 ± 30, and 240 ± 20 mg/g (dry weight), respectively. The kinetics of sorption were best described by the pseudo-second-order Lagergren model, with rate constants determined as 3.2 ± 0.1 × 10−4, 1.0 ± 0.1 × 10−4, and 1.6 ± 0.1 × 10−4 g mg−1 min−1 for 1%, 4%, and 8% beads, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号