首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the fabrication of disposable three-electrode cells with integrated metal-film electrodes. The devices were fabricated by a multi-step micro-fabrication approach combining sputtering for the deposition of metals and the dielectric material (SiO2) on the surface of a silicon wafer and photolithography for the definition of the geometry of the sensors. The working electrode was a microelectrode array consisting of bismuth microdisks while the reference and counter electrode strips were made of Ag and Pt, respectively. The utility of these devices was tested for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry and Ni(II) by adsorptive stripping voltammetry. The detection of these trace metals was carried out in unstirred and undeoxygenated solutions exhibiting sub-μg L−1 limits of detection and enhanced analytical characteristics compared to conventional bismuth-film electrodes.  相似文献   

2.
3.
In this work, we describe an automated stripping analyzer operating on a hybrid flow-injection/sequential-injection (FIA/SIA) mode and utilizing a bismuth-film electrode (BiFE) as a flow-through sensor for on-line stripping voltammetry of trace metals. The instrument combines the advantages of FIA and SIA and is characterised by simplicity, low-cost, rapidity, versatility and low consumption of solutions. The proposed analytical flow methodology was applied to the determination of Cd(II) and Pb(II) by anodic stripping voltammetry (ASV) and of Ni(II) and Co(II) by adsorptive stripping voltammetry (AdSV). The steps of the rather complex experimental sequence (i.e. the bismuth-film formation, the analyte accumulation, the voltammetric stripping and the electrode cleaning/regeneration) were conducted on-line and the critical parameters related to the respective analytical procedures were investigated. In ASV, for a accumulation time of 180 s the limits of detection for Cd(II) and Pb(II) were 2 and 1 μg l−1, respectively (S/N = 3) and the relative standard deviations were 5.3% and 4.7%, respectively (n = 8). In AdSV, for a total sample volume of 1000 μl, the limits of detection for Ni(II) and Co(II) were 1 μg l−1 (S/N = 3) and the relative standard deviations were 5.5% and 6.2%, respectively (n = 8). The measurement frequency ranged between 15 and 20 stripping cycles h−1. The results indicate that the BiFE is well suited as a flow-through detector for on-line stripping analysis and, by virtue of its low toxicity, can serve as a viable alternative to mercury-based flow-through electrodes.  相似文献   

4.
This work described a novel type of bismuth/poly(bromocresol purple) film modified glassy carbon electrode (denoted as Bi/Poly(BCP)/GCE) for anodic stripping analysis of trace Cd2+. The Bi/Poly(BCP)/GCE was fabricated in situ by depositing simultaneously bismuth and cadmium by reduction at ?1.20 V on the poly(BCP) film using a differential pulse voltammetry. Under the optimum conditions, the anodic stripping peak current response increased linearly with the Cd2+ concentrations in a range of 2.0×10?8–1.0×10?7 M and 1.0×10?7–6.0×10?6 M in 0.1 M NaAc‐HAc buffer solution (pH 5.0) with the detection limit of 6.5×10?9 M (S/N=3). The Bi/poly(BCP)/GCE performed good reproducibility and high sensitivity. Finally, this proposed method was successfully applied to determine the concentration of Cd2+ in water samples.  相似文献   

5.
A better understanding of metal ion binding to soil organic substances is of fundamental importance in geochemical modeling of environments. Fulvic acids (FA) and humic acids (HA) make up an important part of soil organic matter, and their binding capacity affects the fate of metal ions and plays an important role in their mobility. Binding constants of Pb(II) to HA and FA were evaluated by anodic stripping square wave voltammetry (ASSWV) where the binding reaction was performed at pH 4.5 in a medium of 0.020 mol l−1 KNO3. Results showed that ASSWV technique was well suited for the estimation of the binding capacity of a natural organic matter towards heavy metals. Based on the voltammetric titration curves, binding constants of Pb(II) complexes formed with HA and FA were 0.78 × 106 and 0.15 × 106 mol−1 l, which indicated that complex of Pb2+ with HA was more stable than with FA. The average molecular weight of HA and FA prepared from soil samples were also found to be 1821 g mol−1 and 805 g mol−1, respectively.  相似文献   

6.
Anodic stripping voltammetry (ASV) determination of Pb2+, Cd2+, and Zn2+ was done using metal catalyst free carbon nanotube (MCFCN) electrodes. Osteryoung square wave stripping voltammetry (OSWSV) was selected for detection. The MCFCNTs are synthesized via Carbo Thermal Carbide Conversion method which leads to residual transition metal free in the CNT structure. The new material shows very good results in detecting heavy metal ions, such as Pb2+, Cd2+, and Zn2+. The calculated limits of detection were 13 nM, 32 nM and 50 nM for Pb2+, Cd2+ and Zn2+, respectively with a deposition time of 150 s.  相似文献   

7.
A new chemically modified bismuth film electrode coated with an ionic liquid [(1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB)] and Nafion was developed for the simultaneous determination Pb2+ and Cd2+ by anodic stripping voltammetry. Compared with conventional bismuth film electrodes, this electrode exhibited greatly improved electrochemical activity for Pb2+ and Cd2+ detection due to the unique properties of Nafion polymer and ionic liquid. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 10–120 µg L?1 with a detect limit of 0.2 µg L?1 for Pb2+, and 0.5 µg L?1 for Cd2+ for 120s deposition. High reproducibility was indicated from the relative standard deviations (1.9 and 2.5 %) for nine repetitive measurements of 20 µg L?1 Pb2+ and Cd2+, respectively. In addition, the surface characteristics of the modified BiFE were investigated by scanning electron microscopy (SEM), and results showed that fibril‐like bismuth nanostructures were formed on the porous Nafion polymer matrix. Finally, the developed electrode was applied to determine Pb2+ and Cd2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb2+ and Cd2+.  相似文献   

8.
A study is presented on the use of the bismuth film electrode (BiFE) operated in the anodic stripping and the cathodic adsorptive stripping voltammetry (ASV, CAdSV) modes, for the determination of two trace heavy metals (Cd and Co, respectively), in soil extract samples. Two types of BiFE were examined in this study: the in situ prepared BiFE, which was employed in ASV determination of Cd, and the ex situ prepared BiFE, which was used in CAdSV of Co with dimethylglyoxime (DMG) as complexing agent. A series of unpretreated soil extracts with varying Cd and Co concentrations were analyzed, and the results obtained compared to those determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed the suitability of stripping analysis at the BiFE for determination of μg l−1 levels of heavy metals in soil extracts. The promising results obtained here, coupled with the non-toxic nature of bismuth (in comparison to commonly used mercury electrodes employed in stripping analysis), offer great promise in centralized and decentralized analysis of trace heavy metals in complex environmental matrices.  相似文献   

9.
Voltammetric sensors based on bismuth film electrodes are an attractive alternative to other sensors for application in electroanalysis of heavy metals. Bismuth film electrodes can be formed by a similar method on the same substrates as mercury. These systems were used most frequently for simultaneous determination of heavy metals such as Pb, Cd and Zn by anodic stripping voltammetry. Our voltammetric sensor was fabricated on an alumina substrate. A photoresist film prepared by pyrolysis of positive photoresist S‐1813 SP15 on the alumina substrate was used as an electrode support for bismuth film deposition. The influence of the Nafion membrane on the measurement sensitivity of the sensor and mechanical stability of the bismuth film were investigated. The sensor was successfully applied for determination of Pb, Cd and Zn in an aqueous solution in the concentration range of 0.2 to 10 µg L?1 by square wave anodic stripping voltammetry on an in‐situ formed bismuth film electrode with Nafion‐coating. Parameters of the sensor such as sensitivity, linearity, detection limit, repeatability and life‐time were evaluated. In the best case, the detection limits were estimated as 0.07, 0.11 and 0.63 µg L?1 for Pb, Cd and Zn, respectively. Finally, the applicability of the sensor was tested in analysis of Pb, Cd and Zn in real samples of tap and river water using the method of standard additions.  相似文献   

10.
Adsorptive stripping voltammetry is a very sensitive and selective method for determination of drugs and organic substances in biological fluids. We have shown that determination of testosterone by adsorptive stripping voltammetry is possible using a lead film electrode. The lead film plating process and accumulation of testosterone were performed simultaneously from an acetate buffer solution of pH = 5.2 at a potential of −1.1 V. The measurements were carried out in undeaerated solutions. The detection limit was 9 × 10−9 mol L−1 for an accumulation time of 120 s; the relative standard deviation for 1 × 10−7 mol L−1 testosterone was 3.8%. The proposed voltammetric procedure for determination of testosterone could be applied to its determination in a pharmaceutical preparation and human urine samples directly without any separation steps.  相似文献   

11.
The synergistic use of Nafion polymeric membrane and in situ electrodeposited bismuth film is a worthwhile strategy to develop electrochemical sensors for the detection of Cd2+ and Pb2+. However, Nafion thin films morphological and conductivity properties have a strong dependence on the environmental conditions, such as relative humidity and temperature, while the bismuth in situ electroplating can affect the repeatability of measurements. With the aim to overcome these drawbacks, the effects of the storage environmental conditions were investigated to improve the morphological stability and electroanalytical performances of Nafion film‐based sensor for the detection of Cd2+ and Pb2+. Nafion‐coated graphite‐based screen‐printed electrodes were stored at different humidity and temperature conditions and characterised by using square wave anodic stripping voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Significant differences were observed at the varying of humidity conditions, with an enhancement of sensor electrochemical performances at lower humidity. Furthermore, different approaches for bismuth in situ electrodeposition on Nafion‐coated screen‐printed electrodes were compared by using overlap or removal approach. This study disclosed considerable differences in the electrochemical performances and morphology of the resulting bismuth‐sensor, obtaining an enhancement of the working stability for the removal approach.  相似文献   

12.
Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples. Correspondence: Gongjun Yang, Ming Shen, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China  相似文献   

13.
The cyclic voltammetry of bismuth in aqueous media and electrochemical stripping determination of bismuth in aqueous and nonaqueous media after its extraction using a rotating disc electrode of glassy carbon was studied. To raise the conductivity of the organic medium and for the preparation of a convenients medium for the determination of bismuth, an alcoholic (methanol) solution of NH4SCN+HClO4 was employed. In non-aqueous medium bismuth can be determined down to concentrations 10?8M by anodic stripping voltammetry and to 5×10?8M by anodic stripping chronopotentiometry. The selectivity of the determination of bismuth after its extraction was studied. Electrochemical determination of 10?6M Bi3+ with error ±3–4% was not interfered with by these elements: Co2+, Ni2+, Zn2+, Cd2+, As3+ in the concentration 8×10?3M, Fe3+, In3+, Sn2+ and Sn4+ (5× 10?3M), Cu2+ (10?3M), Sb3+ (1.5×10?4M) and Hg2+ (2×10?5M). The reproducibility of the electrochemical determination of bismuth according to the recommended procedure is very good.  相似文献   

14.
A new electroactive label has been used to monitor immunoassays in the determination of human serum albumin (HSA) using glassy-carbon electrodes as supports for the immunological reactions. The label was a gold(I) complex, sodium aurothiomalate, which was bound to rabbit IgG anti-human serum albumin (anti-HSA-Au). The HSA was adsorbed on the electrode surface and the immunological reaction with gold-labelled anti-HSA was then performed for one hour by non-competitive or competitive procedures. The gold(I) bound to the anti-HSA was electrodeposited in 0.1 mol L−1 HCl at −1.00 V for 5 min then oxidised in 0.1 mol L−1 H2SO4 solution at +1.40 V for 1 min. Silver electrodeposition at −0.14 V for 1 min followed by anodic stripping voltammetry were then performed in aqueous 1.0 mol L−1 NH3–2.0×10−4 mol L−1 AgNO3. For both non-competitive and competitive formats, calibration plots in the ranges 5.0×10−10 to 1.0×10−8 mol L−1 and 1.0×10−10 to 1.0×10−9 mol L−1 HSA, respectively, with estimated detection limits of 1.5×10−10 mol L−1 (10 ng mL−1) and 1.0×10−10 mol L−1 (7 ng mL−1), respectively, were obtained. Levels of HSA in two healthy volunteer urine samples were also evaluated, using both immunoassay formats.  相似文献   

15.
Tetrazepam dissolved in the Britton-Robinson universal buffer of various pH values (2.5–11.5) containing 10 vol. % of ethanol was reduced at the mercury electrode in a single 2-electron irreversible step due to reduction of the 4,5 C=N double bond of the seven-membered ring. Differential pulse polarography (DPP) and adsorptive cathodic stripping voltammetry (AdCSV) techniques (Linear sweep LS, differential pulse DP and square-wave SW modes) for quantification of tetrazepam in bulk form and in myolastan tablets are presented. Moreover, the described linear sweep, differential pulse, and square-wave adsorptive cathodic stripping voltammetry was successfully applied in quantification of tetrazepam in spiked human serum without any prior extraction of the drug. The obtained results showed an increased sensitivity of the described electro-analytical procedures for the quantification of tetrazepam in the following order DPP, DP-AdCSV, LS-AdCSV, and SW-AdCSV, since the observed limits of tetrazepam quantitation by these electroanalytical techniques were 5 × 10−6 mol L−1, 3 × 10−7 mol L−1, 1 × 10−8 mol L−1, and 3 × 10−9 mol L−1, respectively.  相似文献   

16.
A selective and sensitive method is proposed for the determination of mercury by anodic stripping voltammetry after its preconcentration from the gas phase. Mercury from the sample solution is reduced to elemental Hg by SnCl2 and volatilized by the bubbles of a carrier gas. The gas containing mercury vapour is dried and passed through a capillary onto a gold coated graphite electrode. An anodic stripping voltam-mogram is recorded from 0.1 mol/1 HClO4 + 3 × 10−3 mol/1 HCl solution. The calibration curve is linear from 1 × 10−9 to 4 × 10−8 mol/1 Hg(NO3)2. The absolute detection limit is 0.46 ng Hg. The relative standard deviations for 4 × 10−9 mol/1 and 2 × 10−8 mol/1 Hg(NO3)2 are 9.8% and 6.1%, respectively n = 5).  相似文献   

17.
《Electroanalysis》2006,18(2):177-185
In this article, the results of some recent investigations on two types of bismuth‐modified carbon paste electrodes are presented. In the first study, the bismuth‐film carbon paste electrode (BiF‐CPE) operated in situ and employed in anodic stripping voltammetry of Cd(II) and Pb(II) at the low μg L?1 level was of interest in view of choosing the proper Bi(III)‐to‐Me(II) concentration ratios (where Me: Pb or Cd). Such optimization has resulted in significant improvement of detection limits down to 1.0 μg L?1 Cd and 0.8 μg L?1 for Pb, which allowed us to apply the BiF‐CPE for analysis of selected real samples of tap and sea water. The BiF‐CPE was also further investigated for its application in highly alkaline media. In this case, attention was focused on the complex‐forming capabilities of the OH ions and their effect on the anodic stripping characteristics of some heavy metals (i.e. Cd, Pb, Tl) as well as upon the formation of the bismuth film itself. The last example deals with the continuing characterization of the recently introduced carbon paste electrodes modified with bismuth powder (Bi‐CPEs) which combine the advantageous properties of carbon paste material with the favorable electrochemical properties of bismuth. Three series of electrodes, differing either in the content of metallic bismuth (from 8 to 50% w/w) or in the type of the carbon powder used (two spectroscopic types of graphite and powdered glassy carbon), were compared and the respective relations to the optimal carbon paste composition evaluated. Attractive electroanalytical performance of the Bi‐CPE in anodic stripping voltammetry is demonstrated for selected model mixtures of heavy metals (Mn, Zn, Cd, Pb, Tl, and In).  相似文献   

18.
Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd2+, Pb2+, Cu2+ and Hg2+ was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186 nM, 0.247 nM, 0.169 nM and 0.375 nM for Cd2+, Pb2+, Cu2+ and Hg2+) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb2+ increased in the presence of certain concentrations of other metal ions, such as Cd2+, Cu2+ and Hg2+ both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment.  相似文献   

19.
 An electrochemical study of the doxazosin oxidative process at carbon paste electrodes using different voltammetric techniques has been carried out. The process is irreversible and controlled by adsorption, giving rise to an oxidation wave around 1.0 V in citric acid-citrate buffer (pH 3.0). A mechanism based on the oxidation of the amine group is postulated. Two methods based on adsorptive stripping (AdS) of doxazosin at the C8-modified carbon paste electrode (C8-MCPE), before its voltammetric determination, are studied, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. By means of AdS-DPV and C8-MCPE, doxazosin can be determined over the 1.0 × 10−9 to 3.0 × 10−8 mol L−1 range with a variation coefficient of 2.2% (2.0 × 10−8 mol L−1) and a limit of detection of 7.4 ×10−10 mol L−1. If AdS-SWV is used, a linear range from 1.0 × 10−9 to 4.0 × 10−8 mol L−1 is obtained, the variation coefficient being 2.8% (2.0 × 10−8 mol L−1, and the limit of detection reached 7.7 × 10−10 mol L−1. The AdS-DPV procedure was applied to the determination of doxazosin in urine and formulations. Received March 13, 1999. Revision December 23, 1999.  相似文献   

20.
Microelectrodes of silver–copper alloys have been evaluated for use in voltammetric analyses. Increased overpotential towards the hydrogen overvoltage reaction (HER) was found as a function of increased copper content in the silver. A study of oxidizing products by cyclic voltammetry (CV) in NaOH solution showed ten anodic and eight cathodic peaks which are described in the present paper. The behaviour of these alloy electrodes is somewhere between pure silver and pure copper electrodes. Differential pulse anodic stripping voltammetry (DPASV) was used to measure zinc, cadmium and lead in ultrapure water only (18 MΩcm), and good linearity was found for all metals (r 2=0.998) in the range of 0.5 to 5 ppb with a 600- to 1,200-s plating time. It was additionally found that cadmium and lead were better separated on the alloy electrodes compared to pure silver electrodes. Measurements of nickel were carried out on alloy electrodes by use of adsorptive differential pulse cathodic stripping voltammetry (Ad-DPCSV), and good linearity (r 2=1.000) was found in the range from 0.5 to 5 ppb with an adsorption time of 120 s. The alloy electrodes were also found to be sensitive to nitrate, and good linearity (r 2=0.997) was found in the range from 1 mg L−1 to 100 mg L−1 using differential pulse voltammetry (DPV) scanning from −450 mV to −1,500 mV. Addition of nitrate in ultrapure water afforded two different peaks related to the successive reductions of nitrate and nitrite. In ammonium buffer solution (pH 8.6) only one peak resulting from reduction of nitrate was observed. Furthermore, the use of alloy electrodes containing 17% Cu was tested in real samples, by installing it in a voltammetric system for monitoring of zinc and lead in a polluted river, the river Deûle, near the town of Douai in northern France. Results were found to be in agreement with parallel measurements carried out by ICP-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号