共查询到20条相似文献,搜索用时 15 毫秒
1.
Parviz Fattahi Seyed Mohammad Hassan Hosseini Fariborz Jolai Reza Tavakkoli-Moghaddam 《Applied Mathematical Modelling》2014
A hybrid flow shop scheduling problem (HFSP) with assembly operations is studied in this paper. In the considered problem, a number of products of the same kind are produced. Each product is assembled using a set of several parts. At first, the parts are produced in a hybrid flow shop and then they are assembled in an assembly stage to produce products. The considered objective is to minimize the completion time of all products (makespan). This problem has been proved strongly NP-hard, so in order to solve it, a hierarchical branch and bound algorithm is presented. Also, some lower and upper bounds are developed to increase the efficiency of the proposed algorithm. The numerical experiments are used to evaluate the performance of the proposed algorithm. 相似文献
2.
This article begins with a review of previously proposed integer formulations for the maximum diversity problem (MDP). This problem consists of selecting a subset of elements from a larger set in such a way that the sum of the distances between the chosen elements is maximized. We propose a branch and bound algorithm and develop several upper bounds on the objective function values of partial solutions to the MDP. Empirical results with a collection of previously reported instances indicate that the proposed algorithm is able to solve all the medium-sized instances (with 50 elements) as well as some large-sized instances (with 100 elements). We compare our method with the best previous linear integer formulation solved with the well-known software Cplex. The comparison favors the proposed procedure. 相似文献
3.
We present a branch and bound algorithm for the maximum clique problem in arbitrary graphs. The main part of the algorithm consists in the determination of upper bounds by graph colorings. Using a modification of a known graph coloring method called DSATUR we simultaneously derive lower and upper bounds for the clique number.
Zusammenfassung Wir stellen einen Branch and Bound Algorithmus für das Maximum Clique Problem in einem beliebigen Graphen vor. Das Hauptaugenmerk richtet sich dabei auf die Bestimmung oberer Schranken mit Hilfe von Färbungen von Graphen. Es wird eine Modifikation einer bekannten Färbungsmethode, genannt DSATUR, verwendet, mit der sich gleichzeitig obere und untere Schranken für die Cliquezahl erstellen lassen.相似文献
4.
5.
Cell formation (CF) is the first and the most important problem in designing cellular manufacturing systems. Due to its non-polynomial nature, various heuristic and metaheuristic algorithms have been proposed to solve CF problem. Despite the popularity of heuristic algorithms, few studies have attempted to develop exact algorithms, such as branch and bound (B&B) algorithms, for this problem. We develop three types of branch and bound algorithms to deal with the cell formation problem. The first algorithm uses a binary branching scheme based on the definitions provided for the decision variables. Unlike the first algorithm, which relies on the mathematical model, the second one is designed based on the structure of the cell formation problem. The last algorithm has a similar structure to the second one, except that it has the ability to eliminate duplicated nodes in branching trees. The proposed branch and bound algorithms and a hybrid genetic algorithm are compared through some numerical examples. The results demonstrate the effectiveness of the modified problem-oriented branch and bound algorithm in solving relatively large size cell formation problems. 相似文献
6.
The paper studies a train scheduling problem faced by railway infrastructure managers during real-time traffic control. When train operations are perturbed, a new conflict-free timetable of feasible arrival and departure times needs to be re-computed, such that the deviation from the original one is minimized. The problem can be viewed as a huge job shop scheduling problem with no-store constraints. We make use of a careful estimation of time separation among trains, and model the scheduling problem with an alternative graph formulation. We develop a branch and bound algorithm which includes implication rules enabling to speed up the computation. An experimental study, based on a bottleneck area of the Dutch rail network, shows that a truncated version of the algorithm provides proven optimal or near optimal solutions within short time limits. 相似文献
7.
In this article, we first review previous exact approaches as well as theoretical contributions for the problem of reducing the bandwidth of a matrix. This problem consists of finding a permutation of the rows and columns of a given matrix which keeps the non-zero elements in a band that is as close as possible to the main diagonal. This NP-complete problem can also be formulated as a labeling of vertices on a graph, where edges are the non-zero elements of the corresponding symmetrical matrix. We propose a new branch and bound algorithm and new expressions for known lower bounds for this problem. Empirical results with a collection of previously reported instances indicate that the proposed algorithm compares favourably to previous methods. 相似文献
8.
In this work a genetic algorithm is presented for the unrelated parallel machine scheduling problem in which machine and job sequence dependent setup times are considered. The proposed genetic algorithm includes a fast local search and a local search enhanced crossover operator. Two versions of the algorithm are obtained after extensive calibrations using the Design of Experiments (DOE) approach. We review, evaluate and compare the proposed algorithm against the best methods known from the literature. We also develop a benchmark of small and large instances to carry out the computational experiments. After an exhaustive computational and statistical analysis we can conclude that the proposed method shows an excellent performance overcoming the rest of the evaluated methods in a comprehensive benchmark set of instances. 相似文献
9.
Many real problems can be modelled as robust shortest path problems on interval digraphs, where intervals represent uncertainty about real costs and a robust path is not too far from the shortest path for each possible configuration of the arc costs.A branch and bound algorithm for this problem is presented. 相似文献
10.
In this article, we present and validate a simplicial branch and bound duality-bounds algorithm for globally solving the linear sum-of-ratios fractional program. The algorithm computes the lower bounds called for during the branch and bound search by solving ordinary linear programming problems. These problems are derived by using Lagrangian duality theory. The algorithm applies to a wide class of linear sum-of-ratios fractional programs. Two sample problems are solved, and the potential practical and computational advantages of the algorithm are indicated. 相似文献
11.
Chenggen Shi Jie Lu Guangquan Zhang Hong Zhou 《Applied mathematics and computation》2006,180(2):529-537
For linear bilevel programming, the branch and bound algorithm is the most successful algorithm to deal with the complementary constraints arising from Kuhn–Tucker conditions. However, one principle challenge is that it could not well handle a linear bilevel programming problem when the constraint functions at the upper-level are of arbitrary linear form. This paper proposes an extended branch and bound algorithm to solve this problem. The results have demonstrated that the extended branch and bound algorithm can solve a wider class of linear bilevel problems can than current capabilities permit. 相似文献
12.
This paper is concerned with the problem of unconstrained two-dimensional cutting of small rectangular pieces, each of which has its own profit and size, from a large rectangular plate so as to maximize the profit-sum of the pieces produced. Hifi and Zissimopoulos's recursive algorithm using G and Kang's upper bound is presently the most efficient exact algorithm for the problem. We propose a best-first branch and bound algorithm based upon the bottom-up approach that is more efficient than their recursive algorithm. The proposed algorithm uses efficient upper bound and branching strategies that can reduce the number of nodes that must be searched significantly. We demonstrate the efficiency of the proposed algorithm through computational experiments. 相似文献
13.
This paper studies a two-machine scheduling problem with deteriorating jobs which their processing times depend on their waiting time. We develop a branch and bound algorithm to minimize the total tardiness criteria. A lower bound, several dominance properties and an initial upper bound derived from a heuristic algorithm are used to increase the speed of branch and bound algorithm and decrease its required memory space. Computational results are presented to evaluate effectiveness and efficiency of the algorithms. 相似文献
14.
J. R. WillemsA. V. Cabot 《Mathematical and Computer Modelling》1995,21(12):75-84
In this paper, we present a branch and bound algorithm for solving the constrained entropy mathematical programming problem. Unlike other methods for solving this problem, our method solves more general problems with inequality constraints. The advantage of the proposed technique is that the relaxed problem solved at each node is a singly constrained network problem. The disadvantage is that the relaxed problem has twice as many variables as the original problem. An application to regional planning is given, and an example problem is solved. 相似文献
15.
《Operations Research Letters》2023,51(1):67-71
Let us consider a network flow respecting arc capacities and flow conservation constraints. The flow degree of a node is sum of the flow entering and leaving it. We study the problem of determining a flow that minimizes the maximum flow degree of a node. We show how to solve it in strongly polynomial time with linear programming. 相似文献
16.
This paper focuses on the problem of determining locations for long-term care facilities with the objective of balancing the numbers of patients assigned to the facilities. We present a branch and bound algorithm by developing dominance properties, a lower bounding scheme and a heuristic algorithm for obtaining an upper bound for the problem. For evaluation of the suggested branch and bound algorithm, computational experiments are performed on a number of test problems. Results of the experiments show that the suggested algorithm gives optimal solutions of problems of practical sizes in a reasonable amount of computation time. 相似文献
17.
A branch and bound method for the job-shop problem with sequence-dependent setup times 总被引:1,自引:0,他引:1
This paper deals with the job-shop scheduling problem with sequence-dependent setup times. We propose a new method to solve the makespan minimization problem to optimality. The method is based on iterative solving via branch and bound decisional versions of the problem. At each node of the branch and bound tree, constraint propagation algorithms adapted to setup times are performed for domain filtering and feasibility check. Relaxations based on the traveling salesman problem with time windows are also solved to perform additional pruning. The traveling salesman problem is formulated as an elementary shortest path problem with resource constraints and solved through dynamic programming. This method allows to close previously unsolved benchmark instances of the literature and also provides new lower and upper bounds. 相似文献
18.
In this paper, we address the problem of parallel batching of jobs on identical machines to minimize makespan. The problem is motivated from the washing step of hospital sterilization services where jobs have different sizes, different release dates and equal processing times. Machines can process more than one job at the same time as long as the total size of jobs in a batch does not exceed the machine capacity. We present a branch and bound based heuristic method and compare it to a linear model and two other heuristics from the literature. Computational experiments show that our method can find high quality solutions within short computation time. 相似文献
19.
20.
We consider a single machine scheduling problem to minimize the weighted completion time variance. This problem is known to be NP-hard. We propose a heuristic and a lower bound based on job splitting and the Viswanathkumar and Srinivasan procedure. The test on more than 2000 instances shows that this lower bound is very tight and the heuristic yields solutions very close to optimal ones since the gap between the solution given by the heuristic and the lower bound is very small. 相似文献