首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In on-line integrated production–distribution problems, customers release jobs to a manufacturer that has to process the jobs and deliver them to the customers. The jobs are released on-line, that is, at any time there is no information about future jobs. Processed jobs are grouped into batches, which are delivered to the customers as single shipments. The total cost (to be minimized) is the sum of the total weighted flow time and the total delivery cost. Such on-line integrated production–distribution problems have been studied for the case of uncapacitated batches. We consider the capacitated case with an upper bound on the size of a batch. For several versions of the problem, we present efficient on-line algorithms, and use competitive analysis to study their worst-case performance.  相似文献   

2.
We study the problem of scheduling n jobs that arrive over time. We consider a non-preemptive setting on a single machine. The goal is to minimize the total flow time. We use extra resource competitive analysis: an optimal off-line algorithm which schedules jobs on a single machine is compared to a more powerful on-line algorithm that has ? machines. We design an algorithm of competitive ratio , where Δ is the maximum ratio between two job sizes, and provide a lower bound which shows that the algorithm is optimal up to a constant factor for any constant ?. The algorithm works for a hard version of the problem where the sizes of the smallest and the largest jobs are not known in advance, only Δ and n are known. This gives a trade-off between the resource augmentation and the competitive ratio.We also consider scheduling on parallel identical machines. In this case the optimal off-line algorithm has m machines and the on-line algorithm has ?m machines. We give a lower bound for this case. Next, we give lower bounds for algorithms using resource augmentation on the speed. Finally, we consider scheduling with hard deadlines, and scheduling so as to minimize the total completion time.  相似文献   

3.
A manufacturer has to process jobs released on-line and deliver them to customers. Preemption is allowed. Jobs are grouped into batches for delivery. The sum of the total flow time and the total delivery cost is minimized. Deliveries to different customers cannot be combined. We present an on-line algorithm with the competitive ratio bounded by 3+α3+α, where αα is the ratio of the largest processing time to the smallest processing time.  相似文献   

4.
This paper considers the problem of on-line scheduling a list of independent jobs in which each job has an arbitrary release time on m parallel identical machines. In this problem, jobs arrive in form of order before its release time and decisions have to be made whenever an order is placed and the orders arrive according to any sequence. A heuristic algorithm, NMLS, better than MLS is given for any m ? 2. The competitive ratio is improved from 2.93920 to 2.78436.  相似文献   

5.
In this paper we consider a single-machine common due window assignment and scheduling problem with batch delivery cost. The starting time and size of the due window are decision variables. Finished jobs are delivered in batches. There is no capacity limit on each delivery batch, and the cost per batch delivery is fixed and independent of the number of jobs in the batch. The objective is to find a job sequence, a delivery date for each job, and a starting time and a size for the due window that jointly minimize the total cost comprising earliness, weighted number of tardy jobs, job holding, due window starting time and size, and batch delivery. We provide some properties of the optimal solution and present polynomial-time algorithms for the problem.  相似文献   

6.
We consider the problem of scheduling jobs on-line on a single machine and on identical machines with the objective to minimize total completion time. We assume that the jobs arrive over time. We give a general 2-competitive algorithm for the single machine problem. The algorithm is based on delaying the release time of the jobs, i.e., making the jobs artificially later available to the on-line scheduler than the actual release times. Our algorithm includes two known algorithms for this problem that apply delay of release times. The proposed algorithm is interesting since it gives the on-line scheduler a whole range of choices for the delays, each of which leading to 2-competitiveness.We also show that the algorithm is 2α competitive for the problem on identical machines where α is the performance ratio of the Shortest Remaining Processing Time first rule for the preemptive relaxation of the problem.  相似文献   

7.
研究具有前瞻区间的两个不相容工件组单位工件单机无界平行分批在线排序问题.工件按时在线到达, 目标是最小化最大完工时间. 在无界平行分批排序中, 一台容量无限制机器可将多个工件形成一批同时加工, 每一批的加工时间等于该批中最长工件的加工时间. 具有前瞻区间是指在时刻t, 在线算法能预见到时间区间(t,t+\beta]内到达的所有工件的信息.不可相容的工件组是指属于不同组的工件不能安排在同一批中加工.对该问题提供了一个竞争比为\ 1+\alpha 的最好可能的在线算法,其中\ \alpha 是方程2\alpha^{2}+(\beta +1)\alpha +\beta -2=0的一个正根, 这里0\leq \beta <1.  相似文献   

8.
考虑了工件有到达时间且拒绝工件总个数不超过某个给定值的单机平行分批排序问题.在该问题中,给定一个工件集和一台可以进行批处理加工的机器.每个工件有它的到达时间和加工时间;对于每个工件来说要么被拒绝要么被接受安排在机器的某一个批次里进行加工;一个工件如果被拒绝,则需支付该工件对应的拒绝费用.为了保证一定的服务水平,要求拒绝工件的总个数不超过给定值.目标是如何安排被接受工件的加工批次和加工次序使得其最大完工时间与被拒绝工件的总拒绝费用之和最小.该问题是NP-难的,对此给出了伪多项式时间动态规划精确算法,2-近似算法和完全多项式时间近似方案.  相似文献   

9.
We present on-line algorithms to minimize the makespan on a single batch processing machine. We consider a parallel batching machine that can process up to b jobs simultaneously. Jobs in the same batch complete at the same time. Such a model of a batch processing machine has been motivated by burn-in ovens in final testing stage of semiconductor manufacturing. We deal with the on-line scheduling problem when jobs arrive over time. We consider a set of independent jobs. Their number is not known in advance. Each job is available at its release date and its processing requirement is not known in advance. This general problem with infinite machine capacity is noted 1∣p − batch, rj, b = ∞∣Cmax. Deterministic algorithms that do not insert idle-times in the schedule cannot be better than 2-competitive and a simple rule based on LPT achieved this bound [Z. Liu, W. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) 129–136]. If we are allowed to postpone start of jobs, the performance guarantee can be improved to 1.618. We provide a simpler proof of this best known lower bound for bounded and unbounded batch sizes. We then present deterministic algorithms that are best possible for the problem with unbounded batch size (i.e., b = ∞) and agreeable processing times (i.e., there cannot exist an on-line algorithm with a better performance guarantee). We then propose another algorithm that leads to a best possible algorithm for the general problem with unbounded batch size. This algorithm improves the best known on-line algorithm (i.e. [G. Zhang, X. Cai, C.K. Wong, On-line algorithms for minimizing makespan on batch processing machines, Naval Research Logistics 48 (2001) 241–258]) in the sense that it produces a shortest makespan while ensuring the same worst-case performance guarantee.  相似文献   

10.
研究具有两个不相容工件族单位工件单机有界平行分批的在线排序问题.工件按时在线到达,目标是最小化最大完工时间.在有界平行分批排序中,容量有限制机器最多可将b个工件形成一批同时加工,每个工件及每一批的加工时间为1.不相容工件族是指来自不同工件组的工件不能放在同一批加工.对该问题提供了一个竞争比为√17+3/4的最好可能的在线算法.  相似文献   

11.
The on-line problem of scheduling on a batch processing machine with nonidentical job sizes to minimize makespan is considered. The batch processing machine can process a number of jobs simultaneously as long as the total size of these jobs being processed does not exceed the machine capacity. The processing time of a batch is given by the longest processing time of any job in the batch. Each job becomes available at its arrival time, which is unknown in advance, and its processing time becomes known upon its arrival. The paper deals with two variants: the case only with two distinct arrival times and the general case. For the first case, an on-line algorithm with competitive ratio 119/44 is given. For the latter one, a simple algorithm with competitive ratio 3 is given. For both variants the better ratios can be obtained if the problem satisfies proportional assumption.  相似文献   

12.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

13.
研究当不相容工件组的个数与机器数相等时,具有前瞻区间的单位工件平行机无界平行分批在线排序问题.工件按时在线到达, 目标是最小化 最大完工时间. 具有前瞻区间是指在时刻t, 在线算法能预见到时间区间(t,t+\beta) 内到达的所有工件的信息.不可相容的工件组是指属于不同组的工件不能被安排在同一批中加工. \beta\geq 1 时, 提供了一个最优的在线算法; 当0\leq \beta < 1时, 提供了一个竞争比为1+\alpha 的最好可能的在线算法, 其中\alpha是方程\alpha^{2}+(1+\beta) \alpha+\beta-1=0的一个正根.最后, 给出了当\beta =0 时稠密算法竞争比的下界,并提供了达到该下界的最好可能的稠密算法.  相似文献   

14.
The single machine scheduling problem with two types of controllable parameters, job processing times and release dates, is studied. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amounts. The objective is to minimize the sum of the total completion time of the jobs and the total compression cost. For the problem with equal release date compression costs we construct a reduction to the assignment problem. We demonstrate that if in addition the jobs have equal processing time compression costs, then it can be solved in O(n2) time. The solution algorithm can be considered as a generalization of the algorithm that minimizes the makespan and total compression cost. The generalized version of the algorithm is also applicable to the problem with parallel machines and to a range of due-date scheduling problems with controllable processing times.  相似文献   

15.
We consider on-line scheduling of unit time jobs on a single machine with job-dependent penalties. The jobs arrive on-line (one by one) and can be either accepted and scheduled, or be rejected at the cost of a penalty. The objective is to minimize the total completion time of the accepted jobs plus the sum of the penalties of the rejected jobs.We give an on-line algorithm for this problem with competitive ratio . Moreover, we prove that there does not exist an on-line algorithm with competitive ratio better than 1.63784.  相似文献   

16.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

17.
In this paper we consider the problem of minimizing number of tardy jobs on a single batch processing machine. The batch processing machine is capable of processing up to B jobs simultaneously as a batch. We are given a set of n jobs which can be partitioned into m incompatible families such that the processing times of all jobs belonging to the same family are equal and jobs of different families cannot be processed together. We show that this problem is NP-hard and present a dynamic programming algorithm which has polynomial time complexity when the number of job families and the batch machine capacity are fixed. We also show that when the jobs of a family have a common due date the problem can be solved by a pseudo-polynomial time procedure.  相似文献   

18.
本文考虑了多个客户订购不同种类的工件,工件生产完后需要运输到客户的单机供应链排序问题.由于工件属于不同的种类,在加工不同种类工件前要有一个准备时间.每个客户分布在不同位置,客户的每个工件都有一个交货期,工件是分批配送的,每一批配送需要花费一定的时间及费用.考虑了两个与交货期有关的目标函数,分别给出了它们的最优算法.  相似文献   

19.
We consider a scheduling problem in which n independent and simultaneously available jobs are to be processed on a single machine. The jobs are delivered in batches and the delivery date of a batch equals the completion time of the last job in the batch. The delivery cost depends on the number of deliveries. The objective is to minimize the sum of the total weighted flow time and delivery cost. We first show that the problem is strongly NP-hard. Then we show that, if the number of batches is B, the problem remains strongly NP-hard when B ? U for a variable U ? 2 or B ? U for any constant U ? 2. For the case of B ? U, we present a dynamic programming algorithm that runs in pseudo-polynomial time for any constant U ? 2. Furthermore, optimal algorithms are provided for two special cases: (i) jobs have a linear precedence constraint, and (ii) jobs satisfy the agreeable ratio assumption, which is valid, for example, when all the weights or all the processing times are equal.  相似文献   

20.
研究单处理机工件按加工长度不增顺序到达的在线分批排序问题.工件按时在线到达,目标是最小化最大流程.流程时间是指工件的完工时间与到达时间的差值,它体现了工件在系统内的逗留时间.对于批容量有界的情形,给出了一个竞争比为1+√5/2的最好可能的在线算法;对于批容量无界的情形,给出了一个竞争比为√2的最好可能的在线算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号