首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new algorithm, iterative estimation maximization (IEM), for stochastic linear programs with conditional value-at-risk constraints. IEM iteratively constructs a sequence of linear optimization problems, and solves them sequentially to find the optimal solution. The size of the problem that IEM solves in each iteration is unaffected by the size of random sample points, which makes it extremely efficient for real-world, large-scale problems. We prove the convergence of IEM, and give a lower bound on the number of sample points required to probabilistically bound the solution error. We also present computational performance on large problem instances and a financial portfolio optimization example using an S&P 500 data set.  相似文献   

2.
This paper addresses the flow shop sequencing problem. Following an investigation of the problem characteristics, a property of this scheduling problem is presented, and is used for the development of a new constructive heuristic with the objective of minimizing the total time to complete the schedule (makespan). The new method, denoted by N&M, is compared with the best constructive heuristic reported in the literature, named NEH. Results from computational experience have shown that for problems having up to 10 machines and 100 jobs, the new heuristic outperforms, on average, the NEH heuristic. There is no significant difference regarding computation effort for both NEH and N&M heuristics.  相似文献   

3.
This paper introduces the Two-Echelon Production-Routing Problem. This problem is motivated from the petrochemical industry, enlarging the supply chain integration by taking into account production, inventory, and routing decisions in a two-echelon vendor-managed inventory system. We describe, model, and design a branch-and-cut (B&C) to solve the problem under different inventory policies. We also propose a novel exact algorithm, by employing parallel computing techniques, in order to combine local search procedures within a traditional B&C scheme. We evaluate the performance of our methods through extensive computational experiments, both by comparing the algorithms, the effectiveness of the different inventory policies, and the impact of these policies on the partial costs. We derive many managerial insights based on the results. We also validate our new exact algorithm by solving similar problems from the literature, such as the two-echelon multi-depot inventory-routing (2E-MDIRP) and the classical multi-vehicle production-routing problem (MV-PRP). Computational experiments show that our method is very competitive. Based on 512 experiments for the 2E-MDIRP, our algorithm was able to find 111 new best known solutions (BKS), besides proving 412 optimal solutions, against 298 from the literature. For 336 experiments over small and medium size MV-PRP instances, we proved 242 optimal solutions, 11 more than the exact methods from the literature, besides providing 95 new BKS. Moreover, we were the first to tackle large MV-PRP instances exactly, and in this case, our algorithm provides all BKS for instances up to 50 customers, 20 periods and 5 vehicles, outperforming all meta/matheuristics procedures from the literature.  相似文献   

4.
The problem of numerically resolving an interface separating two different components is a common problem in several scientific and engineering applications. One alternative is to use phase field or diffuse interface methods such as the Cahn–Hilliard (C–H) equation, which introduce a continuous transition region between the two bulk phases. Different numerical schemes to solve the C–H equation have been suggested in the literature. In this work, the least squares spectral element method (LS-SEM) is used to solve the Cahn–Hilliard equation. The LS-SEM is combined with a time–space coupled formulation and a high order continuity approximation by employing C11p-version hierarchical interpolation functions both in space and time. A one-dimensional case of the Cahn–Hilliard equation is solved and the convergence properties of the presented method analyzed. The obtained solution is in accordance with previous results from the literature and the basic properties of the C–H equation (i.e. mass conservation and energy dissipation) are maintained. By using the LS-SEM, a symmetric positive definite problem is always obtained, making it possible to use highly efficient solvers for this kind of problems. The use of dynamic adjustment of number of elements and order of approximation gives the possibility of a dynamic meshing procedure for a better resolution in the areas close to interfaces.  相似文献   

5.
In this paper we introduce DRL*, a new hierarchy of linear relaxations for 0-1 mixed integer linear programs (MIPs), based on the idea of Reformulation-Linearization, and explore its links with the Lift-and-Project (L&P) hierarchy and the Sherali-Adams (RLT) hierarchy. The relaxations of the new hierarchy are shown to be intermediate in strength between L&P and RLT relaxations, and examples are shown for which it leads to significantly stronger bounds than those obtained from Lift-and-Project relaxations. On the other hand, as opposed to the RLT relaxations, a key advantage of the DRL* relaxations is that they feature a decomposable structure when formulated in extended space, therefore lending themselves to more efficient solution algorithms by properly exploiting decomposition. Links between DRL* and both the L&P and RLT hierarchies are further explored, and those constraints which should be added to the rank d L&P relaxation (resp to the rank d RLT relaxation) to make it coincide with the rank d DRL* relaxation (resp: to the rank d RLT relaxation) are identified. Furthermore, a full characterization of those 0-1 MIPs for which the DRL* and RLT relaxations coincide is obtained. As an application, we show that both the RLT and DRL* relaxations are the same up to rank d for the problem of optimizing a pseudoboolean function of degree d over a polyhedron. We report computational results comparing the strengths of the rank 2 L&P, DRL* and RLT relaxations. Impact on possible improved efficiency in computing some bounds for the quadratic assignment problem and other directions for future research are suggested in the conclusions.  相似文献   

6.
We review several linear programming (LP) formulations for the one-dimensional cutting stock and bin packing problems, namely, the models of Kantorovich, Gilmore–Gomory, onecut models, as in the Dyckhoff–Stadtler approach, position-indexed models, and a model derived from the vehicle routing literature.We analyse some relations between the corresponding LP relaxations, and their relative strengths, and refer how to derive branching schemes that can be used in the exact solution of these problems, using branch-and-price.  相似文献   

7.
We review four facility location problems which are motivated by urban service applications and which can be thought of as extensions of the classic Q-median problem on networks. In problems P1 and P2 it is assumed that travel times on network links change over time in a probabilistic way. In P2 it is further assumed that the facilities (servers) are movable so that they can be relocated in response to new network travel times. Problems P3 and P4 examine the Q-median problem for the case when the service capacity of the facilities is finite and, consequently, some or all of the facilities can be unavailable part of the time. In P3 the facilities have stationary home locations but in P4 they have movable locations and thus can be relocated to compensate for the unavailability of the busy facilities. We summarize our main results to date on these problems.  相似文献   

8.
The simple assembly line balancing problem (SALBP) is a well-studied NP-complete problem for which a new problem database of generated instances was published in 2013. This paper describes the application of a branch, bound, and remember (BB&R) algorithm using the cyclic best-first search strategy to this new database to produce provably exact solutions for 86% of the unsolved problems in this database. A new backtracking rule to save memory is employed to allow the BB&R algorithm to solve many of the largest problems in the database.  相似文献   

9.
With the rapid development in computer technologies, mathematical programming-based technique to solve scheduling problems is significantly receiving attention from researchers. Although, it is not efficient solution method due to the NP-hard structure of these problems, mathematical programming formulation is the first step to develop an effective heuristic. Numerous comparative studies for variety scheduling problems have appeared over the years. But in our search in literature there is not an entirely review for mathematical formulations of flexible job shop scheduling problems (FJSP). In this paper, four the most widely used formulations of the FJSP are compiled from literature and a time-indexed model for FJSP is proposed. These formulations are evaluated under three categories that are distinguished by the type of binary variable that they rely on for using of sequencing operations on machines. All five formulations compared and results are presented.  相似文献   

10.
We construct the 2-category obtained from a category by freely adjoining a right adjoint for each morphism and isolate its universal property. Some others basic properties are also studied. Some examples in which the category is freely generated by a graph are discussed in detail. For these categories, the 2-cells are given a geometric interpretation and shown to be similar to certain diagrams which have appeared in the literature on C∗-algebras.  相似文献   

11.
The field of cluster analysis is primarily concerned with the partitioning of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the fuzzy clustering problem, where each data point is to be assigned to (possibly) several clusters, with a membership grade assigned to each data point that reflects the likelihood of the data point belonging to that cluster. The fuzzy clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities. This construct is embedded within a specialized branch-and-bound (B&B) algorithm to solve the problem to global optimality. Computational experience is reported using several standard data sets from the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular fuzzy c-means algorithmic technique and the commercial global optimizer BARON.  相似文献   

12.
In this paper a problem of scheduling a single machine under linear deterioration which aims at minimizing the number of tardy jobs is considered. According to our assumption, processing time of each job is dependent on its starting time based on a linear function where all the jobs have the same deterioration rate. It is proved that the problem is NP-hard; hence a branch and bound procedure and a heuristic algorithm with O(n 2) is proposed where the heuristic one is utilized for obtaining the upper bound of the B&B procedure. Computational results for 1,800 sample problems demonstrate that the B&B method can solve problems with 28 jobs quickly and in some other groups larger problems are also solved. Generally, B&B method can optimally solve 85% of the samples which shows high performance of the proposed method. Also it is shown that the average value of the ratio of optimal solution to the heuristic algorithm result with the objective ??(1 ? Ui) is at most 1.11 which is more efficient in comparison to other proposed algorithms in related studies in the literature.  相似文献   

13.
We investigate the vehicle routing with demand allocation problem where the decision-maker jointly optimizes the location of delivery sites, the assignment of customers to (preferably convenient) delivery sites, and the routing of vehicles operated from a central depot to serve customers at their designated sites. We propose an effective branch-and-price (B&P) algorithm that is demonstrated to greatly outperform the use of commercial branch-and-bound/cut solvers such as CPLEX. Central to the efficacy of the proposed B&P algorithm is the development of a specialized dynamic programming procedure that extends works on elementary shortest path problems with resource constraints in order to solve the more complex column generation pricing subproblem. Our computational study demonstrates the efficacy of the proposed approach using a set of 60 problem instances. Moreover, the proposed methodology has the merit of providing optimal solutions in run times that are significantly shorter than those reported for decomposition-based heuristics in the literature.  相似文献   

14.
Many of the existing e-negotiation support systems are built around one negotiation protocol. This effectively restricts their use to those problems and interactions that had been assumed a priori by the systems’ designers. Field and experimental studies show that the way the negotiation process is structured depends on the negotiators’ characteristics, the problem and the context in which an agreement is sought. It has also been recognized in literature that both the way a problem is represented and the solution process implemented strongly influence the results at which individual decision-makers and negotiators arrive. Building on the e-negotiation Montreal taxonomy this article proposes a more complete typology of protocols and their characteristics. It also presents the elements of a theory for the design of negotiation protocols. The proposed protocol formalism allows for the construction of models from which users can select a protocol instance that suits them and/or is appropriate for the problem at-hand. Furthermore, this formalism allows for the construction of protocols that can be modified during the user–system interactions. The paper also presents two key requirements for negotiation protocols embedded in support systems, namely their satisfiability and completeness.  相似文献   

15.
The article is devoted to mathematical models and practical algorithms for solving the cutting and packing (C&P) problem. We review and further enhance the main tool of our studies – phi-functions. Those are constructed here for 2D and 3D objects (unlike other standard tools, such as No-Fit Polygons, which are restricted to the 2D geometry). We also demonstrate that in many realistic cases the phi-functions can be described by quite simple formulas without radicals and other complications. Lastly, a general solution strategy using the phi-functions is outlined and illustrated by several 2D and 3D examples.  相似文献   

16.
We present a new method for minimizing the sum of a convex function and aproduct of k nonnegative convex functions over a convex set. This problem isreduced to a k-dimensional quasiconcave minimization problem which is solvedby a conical branch-and-bound algorithm. Comparative computational results areprovided on test problems from the literature.  相似文献   

17.
Cutting and packing problems have been extensively studied in the literature in recent decades, mainly due to their numerous real-world applications while at the same time exhibiting intrinsic computational complexity. However, a major limitation has been the lack of problem generators that can be widely and commonly used by all researchers in their computational experiments. In this paper, a problem generator for every type of two-dimensional rectangular cutting and packing problems is proposed. The problems are defined according to the recent typology for cutting and packing problems proposed by Wäscher, Haußner, and Schumann (2007) and the relevant problem parameters are identified. The proposed problem generator can significantly contribute to the quality of the computational experiments run with cutting and packing problems and therefore will help improve the quality of the papers published in this field.  相似文献   

18.
The Single-Allocation Ordered Median Hub Location problem is a recent hub model introduced by Puerto et al. (2011) [32] that provides a unifying analysis of the class of hub location models. Indeed, considering ordered objective functions in hub location models is a powerful tool in modeling classic and alternative location paradigms, that can be applied with success to a large variety of problems providing new distribution patterns induced by the different users’ roles within the supply chain network. In this paper, we present a new formulation for the Single-Allocation Ordered Median Hub Location problem and a branch-and-bound-and-cut (B&B&Cut) based algorithm to solve optimally this model. A simple illustrative example is discussed to demonstrate the technique, and then a battery of test problems with data taken from the AP library are solved. The paper concludes that the proposed B&B&Cut approach performs well for small to medium sized problems.  相似文献   

19.
We propose a new inexact column-and-constraint generation (i-C&CG) method to solve two-stage robust optimization problems. The method allows solutions to the master problems to be inexact, which is desirable when solving large-scale and/or challenging problems. It is equipped with a backtracking routine that controls the trade-off between bound improvement and inexactness. Importantly, this routine allows us to derive theoretical finite convergence guarantees for our i-C&CG method. Numerical experiments demonstrate computational advantages of our i-C&CG method over state-of-the-art column-and-constraint generation methods.  相似文献   

20.
Exponentiable functors between quantaloid-enriched categories are characterized in elementary terms. The proof goes as follows: the elementary conditions on a given functor translate into existence statements for certain adjoints that obey some lax commutativity; this, in turn, is precisely what is needed to prove the existence of partial products with that functor; so that the functor’s exponentiability follows from the works of Niefield (J. Pure Appl. Algebra 23:147–167, 1982) and Dyckhoff and Tholen (J. Pure Appl. Algebra 49:103–116, 1987).   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号