首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a scheduling problem in which n jobs are to be processed on a single machine. The jobs are processed in batches and the processing time of each job is a simple linear function of its waiting time, i.e., the time between the start of the processing of the batch to which the job belongs and the start of the processing of the job. The objective is to minimize the makespan, i.e., the completion time of the last job. We first show that the problem is strongly NP-hard. Then we show that, if the number of batches is B  , the problem remains strongly NP-hard when B?UB?U for a variable U?2U?2 or B?UB?U for any constant U?2U?2. For the case of B?UB?U, we present a dynamic programming algorithm that runs in pseudo-polynomial time and a fully polynomial time approximation scheme (FPTAS) for any constant U?2U?2. Furthermore, we provide an optimal linear time algorithm for the special case where the jobs are subject to a linear precedence constraint, which subsumes the case where all the job growth rates are equal.  相似文献   

2.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem.  相似文献   

3.
This note investigates two-machine flow shop scheduling with transportation constraints to minimize makespan. Recently, Soukhal et al. [A. Soukhal, A. Oulamara, P. Martineau, Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research 161 (2005) 32–41] proved that this problem is strongly NP-hard when the capacity of the truck is limited to two or three parts. The considered problem with blocking constraints is also proved to be strongly NP-hard by Soukhal et al. Unfortunately, their proofs contain mistakes. We point out their proofs’ invalidity and then show that, when the capacity of the truck is limited to two parts, the problem is binary NP-hard, and when the capacity of the truck is limited to three parts the problem is strongly NP-hard even if the jobs have a common processing time on machine one and all jobs have the same transportation time. We show also that the last result can be generalized to any fixed c (c ? 3) parts.  相似文献   

4.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

5.
This paper deals with the two machine permutation flow shop problem with uncertain data, whose deterministic counterpart is known to be polynomially solvable. In this paper, it is assumed that job processing times are uncertain and they are specified as a discrete scenario set. For this uncertainty representation, the min-max and min-max regret criteria are adopted. The min-max regret version of the problem is known to be weakly NP-hard even for two processing time scenarios. In this paper, it is shown that the min-max and min-max regret versions of the problem are strongly NP-hard even for two scenarios. Furthermore, the min-max version admits a polynomial time approximation scheme if the number of scenarios is constant and it is approximable with performance ratio of 2 and not (4/3 − ?)-approximable for any ? > 0 unless P = NP if the number of scenarios is a part of the input. On the other hand, the min-max regret version is not at all approximable even for two scenarios.  相似文献   

6.
In this paper we consider the problem of minimizing number of tardy jobs on a single batch processing machine. The batch processing machine is capable of processing up to B jobs simultaneously as a batch. We are given a set of n jobs which can be partitioned into m incompatible families such that the processing times of all jobs belonging to the same family are equal and jobs of different families cannot be processed together. We show that this problem is NP-hard and present a dynamic programming algorithm which has polynomial time complexity when the number of job families and the batch machine capacity are fixed. We also show that when the jobs of a family have a common due date the problem can be solved by a pseudo-polynomial time procedure.  相似文献   

7.
8.
范静  张峰 《运筹学学报》2015,19(3):116-122
在单机供应链排序问题中, 机器会有多个长度确定的不可用时间段,它仅可以在可用时间段内加工工件,且每个可用时间段的长度不大于给定的常数.多个完工工件可组成一批由一个容量无限制的运输工具发送给客户.问题的目标是如何 安排工件的加工、发送以及不可用时间段,以使总发送时间与总发送费用之和达到最小. 对于工件加工可恢复的情况,可在多项式时间 O(n^2) 内得到最优序. 对于工件加工不可恢复的情况,证明了问题是强NP-难的, 并提出了~2-近似算法.  相似文献   

9.
The symmetric quadratic knapsack problem (SQKP), which has several applications in machine scheduling, is NP-hard. An approximation scheme for this problem is known to achieve an approximation ratio of (1 + ?) for any ? > 0. To ensure a polynomial time complexity, this approximation scheme needs an input of a lower bound and an upper bound on the optimal objective value, and requires the ratio of the bounds to be bounded by a polynomial in the size of the problem instance. However, such bounds are not mentioned in any previous literature. In this paper, we present the first such bounds and develop a polynomial time algorithm to compute them. The bounds are applied, so that we have obtained for problem (SQKP) a fully polynomial time approximation scheme (FPTAS) that is also strongly polynomial time, in the sense that the running time is bounded by a polynomial only in the number of integers in the problem instance.  相似文献   

10.
We present on-line algorithms to minimize the makespan on a single batch processing machine. We consider a parallel batching machine that can process up to b jobs simultaneously. Jobs in the same batch complete at the same time. Such a model of a batch processing machine has been motivated by burn-in ovens in final testing stage of semiconductor manufacturing. We deal with the on-line scheduling problem when jobs arrive over time. We consider a set of independent jobs. Their number is not known in advance. Each job is available at its release date and its processing requirement is not known in advance. This general problem with infinite machine capacity is noted 1∣p − batch, rj, b = ∞∣Cmax. Deterministic algorithms that do not insert idle-times in the schedule cannot be better than 2-competitive and a simple rule based on LPT achieved this bound [Z. Liu, W. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) 129–136]. If we are allowed to postpone start of jobs, the performance guarantee can be improved to 1.618. We provide a simpler proof of this best known lower bound for bounded and unbounded batch sizes. We then present deterministic algorithms that are best possible for the problem with unbounded batch size (i.e., b = ∞) and agreeable processing times (i.e., there cannot exist an on-line algorithm with a better performance guarantee). We then propose another algorithm that leads to a best possible algorithm for the general problem with unbounded batch size. This algorithm improves the best known on-line algorithm (i.e. [G. Zhang, X. Cai, C.K. Wong, On-line algorithms for minimizing makespan on batch processing machines, Naval Research Logistics 48 (2001) 241–258]) in the sense that it produces a shortest makespan while ensuring the same worst-case performance guarantee.  相似文献   

11.
We study how to efficiently schedule online perfectly malleable parallel jobs with arbitrary arrival times on m ? 2 processors. We take into account both the linear speedup of such jobs and their setup time, i.e., the time to create, dispatch, and destroy multiple processes. Specifically, we define the execution time of a job with length pj running on kj processors to be pj/kj + (kj − 1)c, where c > 0 is a constant setup time associated with each processor that is used to parallelize the computation. This formulation accurately models data parallelism in scientific computations and realistically asserts a relationship between job length and the maximum useful degree of parallelism. When the goal is to minimize makespan, we show that the online algorithm that simply assigns kj so that the execution time of each job is minimized and starts jobs as early as possible has competitive ratio 4(m − 1)/m for even m ? 2 and 4m/(m + 1) for odd m ? 3. This algorithm is much simpler than previous offline algorithms for scheduling malleable jobs that require more than a constant number of passes through the job list.  相似文献   

12.
In this paper we consider a single-machine common due window assignment and scheduling problem with batch delivery cost. The starting time and size of the due window are decision variables. Finished jobs are delivered in batches. There is no capacity limit on each delivery batch, and the cost per batch delivery is fixed and independent of the number of jobs in the batch. The objective is to find a job sequence, a delivery date for each job, and a starting time and a size for the due window that jointly minimize the total cost comprising earliness, weighted number of tardy jobs, job holding, due window starting time and size, and batch delivery. We provide some properties of the optimal solution and present polynomial-time algorithms for the problem.  相似文献   

13.
We study the coordinated scheduling problem of hybrid batch production on a single batching machine and two-stage transportation connecting the production, where there is a crane available in the first-stage transportation that transports jobs from the warehouse to the machine and there is a vehicle available in the second-stage transportation to deliver jobs from the machine to the customer. As the job to be carried out is big and heavy in the steel industry, it is reasonable assumed that both the crane and the vehicle have unit capacity. The batching machine processes a batch of jobs simultaneously. Each batch occur a setup cost. The objective is to minimize the sum of the makespan and the total setup cost. We prove that this problem is strongly NP-hard. A polynomial time algorithm is proposed for a case where the job transportation times are identical on the crane or the vehicle. An efficient heuristic algorithm for the general problem is constructed and its tight worst-case bound is analyzed. In order to further verify the performance of the proposed heuristics, we develop a lower bound on the optimal objective function. Computational experiments show that the heuristic algorithm performs well on randomly generated problem instances.  相似文献   

14.
On scheduling an unbounded batch machine   总被引:1,自引:0,他引:1  
A batch machine is a machine that can process up to c jobs simultaneously as a batch, and the processing time of the batch is equal to the longest processing time of the jobs assigned to it. In this paper, we deal with the complexity of scheduling an unbounded batch machine, i.e., c=+∞. We prove that minimizing total tardiness is binary NP-hard, which has been an open problem in the literature. Also, we establish the pseudopolynomial solvability of the unbounded batch machine scheduling problem with job release dates and any regular objective. This is distinct from the bounded batch machine and the classical single machine scheduling problems, most of which with different release dates are unary NP-hard. Combined with the existing results, this paper provides a nearly complete mapping of the complexity of scheduling an unbounded batch machine.  相似文献   

15.
This paper considers the problem of on-line scheduling a list of independent jobs in which each job has an arbitrary release time on m parallel identical machines. In this problem, jobs arrive in form of order before its release time and decisions have to be made whenever an order is placed and the orders arrive according to any sequence. A heuristic algorithm, NMLS, better than MLS is given for any m ? 2. The competitive ratio is improved from 2.93920 to 2.78436.  相似文献   

16.
Given k identical salesmen, where k ? 2 is a constant independent of the input size, the min–max k-traveling salesmen problem on a tree is to determine a set of k tours for the salesmen to serve all customers that are located on a tree-shaped network, so that each tour starts from and returns to the root of the tree with the maximum total edge weight of the tours minimized. The problem is known to be NP-hard even when k = 2. In this paper, we have developed a pseudo-polynomial time exact algorithm for this problem with any constant k ? 2, closing a question that has remained open for a decade. Along with this, we have further developed a (1 + ?)-approximation algorithm for any ? > 0.  相似文献   

17.
张少强  马希荣 《应用数学》2006,19(2):374-380
本文研究一个目标是最小化最大交付时间的能分批处理的非中断单机排序问题.这个问题来源于半导体制造过程中对芯片煅烧工序的排序.煅烧炉可以看成一个能同时最多加工B(〈n)个工件的处理机.此外,每个工件有一个可以允许其加工的释放时间和一个完成加工后的额外交付时间.该问题就是将工件分批后再依批次的排序加工,使得所有工件都交付后所需的时间最短.我们设计了一个用时O(f(l/ε)n^5/2)的多项式时间近似方案,其中关于1/ε的指数函数厂(1/ε)对固定的ε是个常数.  相似文献   

18.
In this paper, we consider coordinated production and interstage batch delivery scheduling problems, where a third-party logistics provider (3PP) delivers semi-finished products in batches from one production location to another production location belonging to the same manufacturer. A batch cannot be delivered until all jobs of the batch are completed at the upstream stage. The 3PP is required to deliver each product within a time T from its release at the upstream stage. We consider two transportation modes: regular transportation, for which delivery departure times are fixed at the beginning, and express transportation, for which delivery departure times are flexible. We analyze the problems faced by the 3PP when either the manufacturer dominates or the 3PP dominates. In this context, we investigate the complexity of several problems, providing polynomiality and NP-completeness results.  相似文献   

19.
In this paper we consider the problem of scheduling n jobs on a single batch processing machine in which jobs are ordered by two customers. Jobs belonging to different customers are processed based on their individual criteria. The considered criteria are minimizing makespan and maximum lateness. A batching machine is able to process up to b jobs simultaneously. The processing time of each batch is equal to the longest processing time of jobs in the batch. This kind of batch processing is called parallel batch processing. Optimal methods for three cases are developed: unbounded batch capacity, b > n, with compatible job groups and bounded batch capacity, b  n, with compatible and non compatible job groups. Each job group represents a different class of customers and the concept of being compatible means that jobs which are ordered by different customers are allowed to be processed in a same batch. We propose an optimal method for the problem with incompatible groups and unbounded batches. About the case when groups are incompatible and bounded batches, our proposed method is considered as optimal when the group with maximum lateness objective has identical processing times. We regard this method, however, as a heuristic when these processing times are different. When groups are compatible and batches are bounded we consider another problem by assuming the same processing times for the group which has the maximum lateness objective and propose an optimal method for this problem.  相似文献   

20.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号