首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce a new class of second-order cover inequalities whose members are generally stronger than the classical knapsack cover inequalities that are commonly used to enhance the performance of branch-and-cut methods for 0–1 integer programming problems. These inequalities result by focusing attention on a single knapsack constraint in addition to an inequality that bounds the sum of all variables, or in general, that bounds a linear form containing only the coefficients 0, 1, and –1. We provide an algorithm that generates all non-dominated second-order cover inequalities, making use of theorems on dominance relationships to bypass the examination of many dominated alternatives. Furthermore, we derive conditions under which these non-dominated second-order cover inequalities would be facets of the convex hull of feasible solutions to the parent constraints, and demonstrate how they can be lifted otherwise. Numerical examples of applying the algorithm disclose its ability to generate valid inequalities that are sometimes significantly stronger than those derived from traditional knapsack covers. Our results can also be extended to incorporate multiple choice inequalities that limit sums over disjoint subsets of variables to be at most one.   相似文献   

2.
This paper is concerned with the constrained optimization problem. A detailed discussion of surrogate constraints with zero duality gaps is presented. Readily available surrogate multipliers are considered that close the duality gaps where constraints are rational-valued. Through illustrative examples, the sources of duality gaps are examined in detail. While in the published literature, in many situations conclusions have been made about the existence of non-zero duality gaps, we show that taking advantage of full problem information can close the duality gaps. Overlooking such information can produce shortcomings in the research in which a non-zero duality gap is observed. We propose theorems to address the shortcomings and report results regarding implementation issues.  相似文献   

3.
In this article we investigate a new variant of Variable Neighborhood Search (VNS): Relaxation Guided Variable Neighborhood Search. It is based on the general VNS scheme and a new Variable Neighborhood Descent (VND) algorithm. The ordering of the neighborhood structures in this VND is determined dynamically by solving relaxations of them. The objective values of these relaxations are used as indicators for the potential gains of searching the corresponding neighborhoods. We tested this new approach on the well-studied multidimensional knapsack problem. Computational experiments show that our approach is beneficial to the search, improving the obtained results. The concept is, in principle, more generally applicable and seems to be promising for many other combinatorial optimization problems approached by VNS. NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research Council.The Institute of Computer Graphics and Algorithms is supported by the European RTN ADONET under grant 504438.  相似文献   

4.
Extending our work on second-order cover cuts [F. Glover, H.D. Sherali, Second-order cover cuts, Mathematical Programming (ISSN: 0025-5610 1436-4646) (2007), doi:10.1007/s10107-007-0098-4. (Online)], we introduce a new class of higher-order cover cuts that are derived from the implications of a knapsack constraint in concert with supplementary two-sided inequalities that bound the sums of sets of variables. The new cuts can be appreciably stronger than the second-order cuts, which in turn dominate the classical knapsack cover inequalities. The process of generating these cuts makes it possible to sequentially utilize the second-order cuts by embedding them in systems that define the inequalities from which the higher-order cover cuts are derived. We characterize properties of these cuts, design specialized procedures to generate them, and establish associated dominance relationships. These results are used to devise an algorithm that generates all non-dominated higher-order cover cuts, and, in particular, to formulate and solve suitable separation problems for deriving a higher-order cut that deletes a given fractional solution to an underlying continuous relaxation. We also discuss a lifting procedure for further tightening any generated cut, and establish its polynomial-time operation for unit-coefficient cuts. A numerical example is presented that illustrates these procedures and the relative strength of the generated non-redundant, non-dominated higher-order cuts, all of which turn out to be facet-defining for this example. Some preliminary computational results are also presented to demonstrate the efficacy of these cuts in comparison with lifted minimal cover inequalities for the underlying knapsack polytope.  相似文献   

5.
This paper presents a preprocessing procedure for the 0–1 multidimensional knapsack problem. First, a non-increasing sequence of upper bounds is generated by solving LP-relaxations. Then, a non-decreasing sequence of lower bounds is built using dynamic programming. The comparison of the two sequences allows either to prove that the best feasible solution obtained is optimal, or to fix a subset of variables to their optimal values. In addition, a heuristic solution is obtained. Computational experiments with a set of large-scale instances show the efficiency of our reduction scheme. Particularly, it is shown that our approach allows to reduce the CPU time of a leading commercial software.  相似文献   

6.
The multidimensional knapsack problem (MKP) is a classic problem in combinatorial optimisation. Several authors have proposed to use surrogate relaxation to compute upper bounds for the MKP. In their papers, the surrogate dual is solved heuristically. We show that, using a modern dual simplex solver as a subroutine, one can solve the surrogate dual exactly in reasonable computing times. On the other hand, the resulting upper bound tends to be strong only for relatively small MKP instances.  相似文献   

7.
In this paper, we propose a new greedy-like heuristic method, which is primarily intended for the general MDKP, but proves itself effective also for the 0-1 MDKP. Our heuristic differs from the existing greedy-like heuristics in two aspects. First, existing heuristics rely on each item’s aggregate consumption of resources to make item selection decisions, whereas our heuristic uses the effective capacity, defined as the maximum number of copies of an item that can be accepted if the entire knapsack were to be used for that item alone, as the criterion to make item selection decisions. Second, other methods increment the value of each decision variable only by one unit, whereas our heuristic adds decision variables to the solution in batches and consequently improves computational efficiency significantly for large-scale problems. We demonstrate that the new heuristic significantly improves computational efficiency of the existing methods and generates robust and near-optimal solutions. The new heuristic proves especially efficient for high dimensional knapsack problems with small-to-moderate numbers of decision variables, usually considered as “hard” MDKP and no computationally efficient heuristic is available to treat such problems. Supported in part by the NSF grant DMI 9812994.  相似文献   

8.
9.
Calculating surrogate constraints   总被引:3,自引:0,他引:3  
Various theoretical properties of the surrogate dual of a mathematical programming problem are discussed, including some connections with the Lagrangean dual. Two algorithms for solving the surrogate dual, suggested by analogy with Lagrangean optimisation, are described and proofs of their convergence given. A simple example is solved using each method.  相似文献   

10.
We present a novel Lagrangian method to find good feasible solutions in theoretical and empirical aspects. After investigating the concept of Lagrangian capacity, which is the value of the capacity constraint that Lagrangian relaxation can find an optimal solution, we formally reintroduce Lagrangian capacity suitable to the 0-1 multidimensional knapsack problem and present its new geometric equivalent condition including a new associated property. Based on the property, we propose a new Lagrangian heuristic that finds high-quality feasible solutions of the 0-1 multidimensional knapsack problem. We verify the advantage of the proposed heuristic by experiments. We make comparisons with existing Lagrangian approaches on benchmark data and show that the proposed method performs well on large-scale data.  相似文献   

11.
Two heuristics for the 0–1 multidimensional knapsack problem (MKP) are presented. The first one uses surrogate relaxation, and the relaxed problem is solved via a modified dynamic-programming algorithm. The heuristics provides a feasible solution for (MKP). The second one combines a limited-branch-and-cut-procedure with the previous approach, and tries to improve the bound obtained by exploring some nodes that have been rejected by the modified dynamic-programming algorithm. Computational experiences show that our approaches give better results than the existing heuristics, and thus permit one to obtain a smaller gap between the solution provided and an optimal solution.  相似文献   

12.
We consider linear programming problems with some equality constraints. For such problems, surrogate relaxation formulations relaxing equality constraints existwith zero primal-dual gap both when all variables are restricted to be integers and when no variable is required to be integer. However, for such surrogate formulations, when the variables are mixed-integer, the primal-dual gap may not be zero. We establish this latter result by a counterexample.  相似文献   

13.
A necessary and sufficient condition is given for the disjunctive constraints construction to provide all valid cuts for a system of logical constraints on linear inequalities. This condition is then applied to several commonly occurring situations of integer programming, and the issue of verification of the condition is discussed.This research was supported by NSF Grant No. GP-37510 X1 and ONR Contract No. N00014-75-C-0621, NR047-048.  相似文献   

14.
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528–541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.  相似文献   

15.
The fractional knapsack problem to obtain an integer solution that maximizes a linear fractional objective function under the constraint of one linear inequality is considered. A modification of the Dinkelbach's algorithm [3] is proposed to exploit the fact that good feasible solutions are easily obtained for both the fractional knapsack problem and the ordinary knapsack problem. An upper bound of the number of iterations is derived. In particular it is clarified how optimal solutions depend on the right hand side of the constraint; a fractional knapsack problem reduces to an ordinary knapsack problem if the right hand side exceeds a certain bound.  相似文献   

16.
Lagrangian dual approaches have been employed successfully in a number of integer programming situations to provide bounds for branch-and-bound procedures. This paper investigates some relationship between bounds obtained from lagrangian duals and those derived from the lesser known, but theoretically more powerful surrogate duals. A generalization of Geoffrion's integrality property, some complementary slackness relationships between optimal solutions, and some empirical results are presented and used to argue for the relative value of surrogate duals in integer programming. These and other results are then shown to lead naturally to a two-phase algorithm which optimizes first the computationally easier lagrangian dual and then the surrogate dual.  相似文献   

17.
We use surrogate analysis and constraint pairing in multidimensional knapsack problems to fix some variables to zero and to separate the rest into two groups – those that tend to be zero and those that tend to be one, in an optimal integer solution. Using an initial feasible integer solution, we generate logic cuts based on our analysis before solving the problem with branch and bound. Computational testing, including the set of problems in the OR-library and our own set of difficult problems, shows our approach helps to solve difficult problems in a reasonable amount of time and, in most cases, with a fewer number of nodes in the search tree than leading commercial software.  相似文献   

18.
Quadratic knapsack problem has a central role in integer and nonlinear optimization, which has been intensively studied due to its immediate applications in many fields and theoretical reasons. Although quadratic knapsack problem can be solved using traditional nonlinear optimization methods, specialized algorithms are much faster and more reliable than the nonlinear programming solvers. In this paper, we study a mixed linear and quadratic knapsack with a convex separable objective function subject to a single linear constraint and box constraints. We investigate the structural properties of the studied problem, and develop a simple method for solving the continuous version of the problem based on bi-section search, and then we present heuristics for solving the integer version of the problem. Numerical experiments are conducted to show the effectiveness of the proposed solution methods by comparing our methods with some state of the art linear and quadratic convex solvers.  相似文献   

19.
In this paper, we present an approximate lifting scheme to derive valid inequalities for general mixed integer programs and for the group problem. This scheme uses superadditive functions as the building block of integer and continuous lifting procedures. It yields a simple derivation of new and known families of cuts that correspond to extreme inequalities for group problems. This new approximate lifting approach is constructive and potentially efficient in computation. J.-P. P. Richard was supported by NSF grant DMI-348611.  相似文献   

20.
Given an undirected network with positive edge costs and a natural number p, the Hop-Constrained Minimum Spanning Tree problem (HMST) is the problem of finding a spanning tree with minimum total cost such that each path starting from a specified root node has no more than p hops (edges). In this paper, we develop new formulations for HMST. The formulations are based on Miller-Tucker-Zemlin (MTZ) subtour elimination constraints, MTZ-based liftings in the literature offered for HMST, and a new set of topology-enforcing constraints. We also compare the proposed models with the MTZ-based models in the literature with respect to linear programming relaxation bounds and solution times. The results indicate that the new models give considerably better bounds and solution times than their counterparts in the literature and that the new set of constraints is competitive with liftings to MTZ constraints, some of which are based on well-known, strong liftings of Desrochers and Laporte (1991).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号