首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a new multi-objective optimization (MOO) methodology based the splitting technique for rare-event simulation. The method generalizes the elite set selection of the traditional splitting framework, and uses both local and global sampling to sample in the decision space. In addition, an ??-dominance method is employed to maintain good solutions. The algorithm was compared with state-of-the art MOO algorithms using a prevailing set of benchmark problems. Numerical experiments demonstrate that the new algorithm is competitive with the well-established MOO algorithms and that it can outperform the best of them in various cases.  相似文献   

2.
Evolutionary algorithm (EA) has become popular in global optimization with applications widely used in many industrial areas. However, there exists probable premature convergence problem when rugged contour situation is encountered. As to the original genetic algorithm (GA), no matter single population or multi-population cases, the ways to prevent the problem of probable premature convergence are to implement various selection methods, penalty functions and mutation approaches. This work proposes a novel approach to perform very efficient mutation to prevent from premature convergence by introducing the concept of information theory. Information-guided mutation is implemented to several variables, which are selected based on the information entropy derived in this work. The areas of search are also determined on the basis of the information amount obtained from previous searches. Several benchmark problems are solved to show the superiority of this information-guided EA. An industrial scale problem is also presented in this work.  相似文献   

3.
We demonstrate a real-world application of the interactive multiple objective optimization (MOO) approach to the simultaneous setting of input and output amounts for the opening of new branches. As illustrated by the case example, all the branches of a fast-food company employ multiple inputs to generate multiple outputs. The company launches several new branches each year and, therefore, needs to plan the quantities of inputs and outputs to be used and produced before their operations. Such input–output settings are a vital practical problem that arises whenever a new branch is opened in a host of different industries. In this paper, we show in detail the entire process of the application from modeling the case problem to generating its solution. In the modeling stage, a data envelopment analysis model and a statistical method are subsequently utilized to form a nonlinear MOO problem for the input–output settings. To solve this problem, we then develop and apply an interactive MOO method, which combines the two earlier interactive methods ( and ), while compensating for their drawbacks and capturing their positive aspects.  相似文献   

4.
We present a new multiobjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA), for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. FastPGA utilizes a new ranking strategy that utilizes more information about Pareto dominance among solutions and niching relations. New genetic operators are employed to enhance the proposed algorithm’s performance in terms of convergence behavior and computational effort as rapid convergence is of utmost concern and highly desired when solving expensive multiobjective optimization problems (MOPs). Computational results for a number of test problems indicate that FastPGA is a promising approach. FastPGA yields similar performance to that of the improved nondominated sorting genetic algorithm (NSGA-II), a widely-accepted benchmark in the MOEA research community. However, FastPGA outperforms NSGA-II when only a small number of solution evaluations are permitted, as would be the case when solving expensive MOPs.  相似文献   

5.
Goal programming (GP) is one of the most commonly used mathematical programming tools to model multiple objective optimisation (MOO) problems. There are numerous MOO problems of various complexity modelled using GP in the literature. One of the main difficulties in the GP is to solve their mathematical formulations optimally. Due to difficulties imposed by the classical solution techniques there is a trend in the literature to solve mathematical programming formulations including goal programmes, using the modern heuristics optimisation techniques, namely genetic algorithms (GA), tabu search (TS) and simulated annealing (SA). This paper uses the multiple objective tabu search (MOTS) algorithm, which was proposed previously by the author to solve GP models. In the proposed approach, GP models are first converted to their classical MOO equivalent by using some simple conversion procedures. Then the problem is solved using the MOTS algorithm. The results obtained from the computational experiment show that MOTS can be considered as a promising candidate tool for solving GP models.  相似文献   

6.
We prove under mild conditions the convergence of some evolutionary algorithm to the solution of the global optimization problem. In the proof, the Lyapunov function's techniques is applied to some semi-dynamical system generated by a Foias operator on the space of the probability measures defined on the set of admissible solutions.  相似文献   

7.
This paper presents a new optimization algorithm called GHS + LEM, which is based on the Global-best Harmony Search algorithm (GHS) and techniques from the learnable evolution models (LEM) to improve convergence and accuracy of the algorithm. The performance of the algorithm is evaluated with fifteen optimization functions commonly used by the optimization community. In addition, the results obtained are compared against the original Harmony Search algorithm, the Improved Harmony Search algorithm and the Global-best Harmony Search algorithm. The assessment shows that the proposed algorithm (GHS + LEM) improves the accuracy of the results obtained in relation to the other options, producing better results in most situations, but more specifically in problems with high dimensionality, where it offers a faster convergence with fewer iterations.  相似文献   

8.
In this paper, a Goal Programming (GP) model is converted into a multi-objective optimization problem (MOO) of minimizing deviations from fixed goals. To solve the resulting MOO problem, a hybrid metaheuristic with two steps is proposed to find the Pareto set's solutions. First, a Record-to-Record Travel with an adaptive memory is used to find first non-dominated Pareto frontier solutions preemptively. Second, a Variable Neighbour Search technique with three transformation types is used to intensify every non dominated solution found in the first Pareto frontier to produce the final Pareto frontier solutions. The efficiency of the proposed approach is demonstrated by solving two nonlinear GP test problems and three engineering design problems. In all problems, multiple solutions to the GP problem are found in one single simulation run. The results prove that the proposed algorithm is robust, fast and simply structured, and manages to find high-quality solutions in short computational times by efficiently alternating search diversification and intensification using very few user-defined parameters.  相似文献   

9.
This paper presents some simple technical conditions that guarantee the convergence of a general class of adaptive stochastic global optimization algorithms. By imposing some conditions on the probability distributions that generate the iterates, these stochastic algorithms can be shown to converge to the global optimum in a probabilistic sense. These results also apply to global optimization algorithms that combine local and global stochastic search strategies and also those algorithms that combine deterministic and stochastic search strategies. This makes the results applicable to a wide range of global optimization algorithms that are useful in practice. Moreover, this paper provides convergence conditions involving the conditional densities of the random vector iterates that are easy to verify in practice. It also provides some convergence conditions in the special case when the iterates are generated by elliptical distributions such as the multivariate Normal and Cauchy distributions. These results are then used to prove the convergence of some practical stochastic global optimization algorithms, including an evolutionary programming algorithm. In addition, this paper introduces the notion of a stochastic algorithm being probabilistically dense in the domain of the function and shows that, under simple assumptions, this is equivalent to seeing any point in the domain with probability 1. This, in turn, is equivalent to almost sure convergence to the global minimum. Finally, some simple results on convergence rates are also proved.  相似文献   

10.
As a synchronization parallel framework, the parallel variable transformation (PVT) algorithm is effective to solve unconstrained optimization problems. In this paper, based on the idea that a constrained optimization problem is equivalent to a differentiable unconstrained optimization problem by introducing the Fischer Function, we propose an asynchronous PVT algorithm for solving large-scale linearly constrained convex minimization problems. This new algorithm can terminate when some processor satisfies terminal condition without waiting for other processors. Meanwhile, it can enhances practical efficiency for large-scale optimization problem. Global convergence of the new algorithm is established under suitable assumptions. And in particular, the linear rate of convergence does not depend on the number of processors.  相似文献   

11.
王珏钰  顾超  朱德通 《数学学报》1936,63(6):601-620
本文给出了一种新的多维滤子算法结合非单调信赖域策略解线性约束优化.目标函数及其投影梯度的分量组成了新的多维滤子,并且与信赖域半径有关.当信赖域半径充分小时,新的滤子能接受试探点,避免算法无限循环.非单调信赖域策略保证了新算法的整体收敛性.目前为止,多维滤子算法局部收敛性分析仍然没有解决,在合理假设下,我们分析了新算法的局部超线性收敛性.数值结果验证了算法的有效性.  相似文献   

12.
For the sparse signal reconstruction problem in compressive sensing, we propose a projection-type algorithm without any backtracking line search based on a new formulation of the problem. Under suitable conditions, global convergence and its linear convergence of the designed algorithm are established. The efficiency of the algorithm is illustrated through some numerical experiments on some sparse signal reconstruction problem.  相似文献   

13.
The problem of portfolio selection is a standard problem in financial engineering and has received a lot of attention in recent decades. Classical mean–variance portfolio selection aims at simultaneously maximizing the expected return of the portfolio and minimizing portfolio variance. In the case of linear constraints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of Markowitz’ critical line algorithm). However, there are many real-world constraints that lead to a non-convex search space, e.g., cardinality constraints which limit the number of different assets in a portfolio, or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no longer be applied, and new solutions are needed.In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge the partial solutions to form the solution of the original non-convex problem. We show that the resulting envelope-based MOEA significantly outperforms existing MOEAs.  相似文献   

14.
In this paper an evolutionary algorithm is presented for the Traveling Purchaser Problem, an important variation of the Traveling Salesman Problem. The evolutionary approach proposed in this paper is called transgenetic algorithm. It is inspired on two significant evolutionary driving forces: horizontal gene transfer and endosymbiosis. The performance of the algorithm proposed for the investigated problem is compared with other recent works presented in the literature. Computational experiments show that the proposed approach is very effective for the investigated problem with 17 and 9 new best solutions reported for capacitated and uncapacitated instances, respectively.  相似文献   

15.
This paper presents a new generic Evolutionary Algorithm (EA) for retarding the unwanted effects of premature convergence. This is accomplished by a combination of interacting generic methods. These generalizations of a Genetic Algorithm (GA) are inspired by population genetics and take advantage of the interactions between genetic drift and migration. In this regard a new selection scheme is introduced, which is designed to directedly control genetic drift within the population by advantageous self-adaptive selection pressure steering. Additionally this new selection model enables a quite intuitive heuristics to detect premature convergence. Based upon this newly postulated basic principle the new selection mechanism is combined with the already proposed Segregative Genetic Algorithm (SEGA), an advanced Genetic Algorithm (GA) that introduces parallelism mainly to improve global solution quality. As a whole, a new generic evolutionary algorithm (SASEGASA) is introduced. The performance of the algorithm is evaluated on a set of characteristic benchmark problems. Computational results show that the new method is capable of producing highest quality solutions without any problem-specific additions.  相似文献   

16.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

17.
The Weiszfeld algorithm for continuous location problems can be considered as an iteratively reweighted least squares method. It generally exhibits linear convergence. In this paper, a Newton algorithm with similar simplicity is proposed to solve a continuous multifacility location problem with the Euclidean distance measure. Similar to the Weiszfeld algorithm, the main computation can be solving a weighted least squares problem at each iteration. A Cholesky factorization of a symmetric positive definite band matrix, typically with a small band width (e.g., a band width of two for a Euclidean location problem on a plane) is performed. This new algorithm can be regarded as a Newton acceleration to the Weiszfeld algorithm with fast global and local convergence. The simplicity and efficiency of the proposed algorithm makes it particularly suitable for large-scale Euclidean location problems and parallel implementation. Computational experience suggests that the proposed algorithm often performs well in the absence of the linear independence or strict complementarity assumption. In addition, the proposed algorithm is proven to be globally convergent under similar assumptions for the Weiszfeld algorithm. Although local convergence analysis is still under investigation, computation results suggest that it is typically superlinearly convergent.  相似文献   

18.
子空间跟踪算法是许多工程计算问题的核心.Hua等人将计算特征值问题的幂法扩展为自然幂法子空间跟踪算法.在指出基于秩1矩阵更新的自然幂法的快速实现方案NP3不收敛的同时,应用矩阵求逆引理给出了一种新的快速子空间跟踪算法:快速幂法子空间跟踪算法.仿真实验表明,所提算法是收敛与稳定的,其性能优于或相当于几种常见的快速子空间跟踪算法.  相似文献   

19.
基于修正拟牛顿方程,利用Goldstein-Levitin-Polyak(GLP)投影技术,建立了求解带凸集约束的优化问题的两阶段步长非单调变尺度梯度投影算法,证明了算法的全局收敛性和一定条件下的Q超线性收敛速率.数值结果表明新算法是有效的,适合求解大规模问题.  相似文献   

20.
Approximations to continuous functions by linear splines cangenerally be greatly improved if the knot points are free variables.In this paper we address the problem of computing a best linearspline L2-approximant to a given continuous function on a givenclosed real interval with a fixed number of free knots. We describe an algorithm that is currently available and establishthe theoretical basis for two new algorithms that we have developedand tested. We show that one of these new algorithms had goodlocal convergence properties by comparison with the other techniques,though its convergence is quite slow. The second new algorithmis not so robust but is quicker and so is used to aid efficiency.A starting procedure based on a dynamic programming approachis introduced to give more reliable global convergence properties. We thus propose a hybrid algorithm which is both robust andreasonably efficient for this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号