共查询到20条相似文献,搜索用时 15 毫秒
1.
The single machine batch scheduling problem to minimize the weighted number of late jobs is studied. In this problem,n jobs have to be processed on a single machine. Each job has a processing time, a due date and a weight. Jobs may be combined to form batches containing contiguously scheduled jobs. For each batch, a constant set-up time is needed before the first job of this batch is processed. The completion time of each job in the batch coincides with the completion time of the last job in this batch. A job is late if it is completed after its due date. A schedule specifies the sequence of jobs and the size of each batch, i.e. the number of jobs it contains. The objective is to find a schedule which minimizes the weighted number of late jobs. This problem isNP-hard even if all due dates are equal. For the general case, we present a dynamic programming algorithm which solves the problem with equal weights inO(n
3) time. We formulate a certain scaled problem and show that our dynamic programming algorithm applied to this scaled problem provides a fully polynomial approximation scheme for the original problem. Each algorithm of this scheme has a time requirement ofO(n
3/ +n
3 logn). A side result is anO(n logn) algorithm for the problem of minimizing the maximum weight of late jobs.Supported by INTAS Project 93-257. 相似文献
2.
It is known that the single machine scheduling problem of minimizing the number of tardy jobs is polynomially solvable. However, it becomes NP-hard if each job has a deadline. Recently, Huo et al. solved some special cases by a backwards scheduling approach. In this note we present a dual approach—forwards greedy algorithms which may have better running time. For example, in the case that the due dates, deadlines, and processing times are agreeable, the running time of the backwards scheduling algorithm is O(n2), while that of the forwards algorithm is O(nlogn). 相似文献
3.
Motivated by just-in-time manufacturing, we consider a single machine scheduling problem with dual criteria, i.e., the minimization of the total weighted earliness subject to minimum number of tardy jobs. We discuss several dominance properties of optimal solutions. We then develop a heuristic algorithm with time complexity O(n3) and a branch and bound algorithm to solve the problem. The computational experiments show that the heuristic algorithm is effective in terms of solution quality in many instances while the branch and bound algorithm is efficient for medium-size problems. 相似文献
4.
This research investigates the problem of scheduling jobs on a set of parallel machines where the speed of the machines depends on the allocation of a secondary resource. The secondary resource is fixed in quantity and is to be allocated to the machines at the start of the schedule. The scheduling objective is to minimize the number of tardy jobs. Two versions of the problem are analyzed. The first version assumes that the jobs are pre-assigned to the machines, while the second one takes into consideration the task of assigning jobs to the machines. The paper proposes an Integer Programming formulation to solve the first case and a set of heuristics for the second. 相似文献
5.
This paper considers the problem of assigning a common due-date to a set of simultaneously available jobs and sequencing them on a single machine. The objective is to determine the optimal combination of the common due-date and job sequence that minimizes a cost function based on the assigned due-date, job earliness values, and number of tardy jobs. It is shown that the optimal due-date coincides with one of the job completion times. Conditions are derived to determine the optimal number of nontardy jobs. It is also shown that the optimal job sequence is one in which the nontardy jobs are arranged in nonincreasing order of processing times. An efficient algorithm of O(n logn) time complexity to find the optimal solution is presented and an illustrative example is provided. Finally, several extensions of the model are discussed.This research was supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant OPG0036424. The authors are thankful to two anonymous referees for their constructive comments. 相似文献
6.
We consider the problem of scheduling family jobs with release dates on a bounded batching machine to minimize the makespan. A polynomial-time approximation scheme for the identical job size model and an approximation algorithm with a worst-case ratio of for the non-identical job size model will be derived. 相似文献
7.
Fatih Safa Erenay Ihsan Sabuncuoglu Ayşegül Toptal Manoj Kumar Tiwari 《European Journal of Operational Research》2010
We consider the bicriteria scheduling problem of minimizing the number of tardy jobs and average flowtime on a single machine. This problem, which is known to be NP-hard, is important in practice, as the former criterion conveys the customer’s position, and the latter reflects the manufacturer’s perspective in the supply chain. We propose four new heuristics to solve this multiobjective scheduling problem. Two of these heuristics are constructive algorithms based on beam search methodology. The other two are metaheuristic approaches using a genetic algorithm and tabu-search. Our computational experiments indicate that the proposed beam search heuristics find efficient schedules optimally in most cases and perform better than the existing heuristics in the literature. 相似文献
8.
In this paper we consider the scheduling problem of minimizing the weighted number of late jobs on a single machine (1|rj|∑wjUj). A branch-and-check algorithm is proposed, where a relaxed integer programming formulation is solved by branch-and-bound and infeasible solutions are cut off using infeasibility cuts. We suggest two ways to generate cuts. First, tightened “no-good” cuts are derived using a modification of the algorithm by Carlier (1982, EJOR, v.11, 42–47) which was developed for the problem of minimizing maximum lateness on a single machine. Secondly we show how to create cuts by using constraint propagation. The proposed algorithm is implemented in the Mosel modelling and optimization language. Computational experiments on instances with up to 140 jobs are reported. A comparison is presented with the exact approach of Péridy at al. (2003, EJOR, v.148, 591–603). 相似文献
9.
Consider m identical machines in parallel, each of which can produce k different product types. There is no setup cost when the machines switch from producing one product type to another. There are n orders each of which requests various quantities of the different product types. All orders are available for processing at time t = 0, and preemption is allowed. Order i has a weight wi and its completion time is the time when its last requested product type finishes. Our goal is to find a preemptive schedule such that the total weighted completion time ∑wiCi is minimized. We show that this problem is NP-hard even when all jobs have identical weights and there are only two machines. Motivated by the computational complexity of the problem, we propose a simple heuristic and show that it obeys a worst-case bound of 2 − 1/m. Finally, empirical studies show that our heuristic performs very well when compared with a lower bound of the optimal cost. 相似文献
10.
This paper studies the single-machine scheduling problem with deteriorating jobs and learning considerations. The objective is to minimize the makespan. We first show that the schedule produced by the largest growth rate rule is unbounded for our model, although it is an optimal solution for the scheduling problem with deteriorating jobs and no learning. We then consider three special cases of the problem, each corresponding to a specific practical scheduling scenario. Based on the derived optimal properties, we develop an optimal algorithm for each of these cases. Finally, we consider a relaxed model of the second special case, and present a heuristic and analyze its worst-case performance bound. 相似文献
11.
We consider the parallel-machine scheduling problem in which the processing time of a job is a simple linear increasing function of its starting time. The objective is to minimize the total completion time. We give a fully polynomial-time approximation scheme (FPTAS) for the case with m identical machines, where m is fixed. This study solves an open problem that has been posed in the literature for ten years. 相似文献
12.
We consider the two-machine flowshop problem with the objective of minimizing the total number of tardy jobs. Since this problem is known to be strongly NP-hard, algorithms are described for four polynomially solvable special cases. In addition, several heuristic algorithms are developed to find optimal or near optimal schedules. Results of computational tests in solving problems up to 60 jobs are reported and directions for future research are provided. 相似文献
13.
Joseph Y.-T. Leung 《Discrete Applied Mathematics》2007,155(8):945-970
We consider the problem of scheduling orders for multiple different product types in an environment with m dedicated machines in parallel. The objective is to minimize the total weighted completion time. Each product type is produced by one and only one of the m dedicated machines; that is, each machine is dedicated to a specific product type. Each order has a weight and may also have a release date. Each order asks for certain amounts of various different product types. The different products for an order can be produced concurrently. Preemptions are not allowed. Even when all orders are available at time 0, the problem has been shown to be strongly NP-hard for any fixed number (?2) of machines. This paper focuses on the design and analysis of efficient heuristics for the case without release dates. Occasionally, however, we extend our results to the case with release dates. The heuristics considered include some that have already been proposed in the literature as well as several new ones. They include various static and dynamic priority rules as well as two more sophisticated LP-based algorithms. We analyze the performance bounds of the priority rules and of the algorithms and present also an in-depth comparative analysis of the various rules and algorithms. The conclusions from this empirical analysis provide insights into the trade-offs with regard to solution quality, speed, and memory space. 相似文献
14.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem. 相似文献
15.
Two-agent scheduling to minimize the total cost 总被引:1,自引:0,他引:1
Two agents, each having his own set of jobs, compete to perform their own jobs on a common processing resource. Each job of the agents has a weight that specifies its importance. The cost of the first agent is the maximum weighted completion time of his jobs while the cost of the second agent is the total weighted completion time of his jobs. We consider the scheduling problem of determining the sequence of the jobs such that the total cost of the two agents is minimized. We provide a 2-approximation algorithm for the problem, show that the case where the number of jobs of the first agent is fixed is NP-hard, and devise a polynomial time approximation scheme for this case. 相似文献
16.
This study investigates scheduling problems that occur when the weighted number of late jobs that are subject to deterministic machine availability constraints have to be minimized. These problems can be modeled as a more general job selection problem. Cases with resumable, non-resumable, and semi-resumable jobs as well as cases without availability constraints are investigated. The proposed efficient mixed integer linear programming approach includes possible improvements to the model, notably specialized lifted knapsack cover cuts. The method proves to be competitive compared with existing dedicated methods: numerical experiments on randomly generated instances show that all 350-job instances of the test bed are closed for the well-known problem 1|ri|∑wiUi. For all investigated problem types, 98.4% of 500-job instances can be solved to optimality within 1 hour. 相似文献
17.
We consider the scheduling problem of minimizing the average-weighted completion time on identical parallel machines when jobs are arriving over time. For both the preemptive and the nonpreemptive setting, we show that straightforward extensions of Smith's ratio rule yield smaller competitive ratios than the previously best-known deterministic on-line algorithms. 相似文献
18.
We consider a two-machine open shop problem where the jobs have release dates and due dates, and where all single operations have unit processing times. The goal is to minimize the weighted number of late jobs. We derive a polynomial time algorithm for this problem, thereby answering an open question posed in a recent paper by Brucker et al.This research was supported by the Christian Doppler Laboratorium für Diskrete Optimierung. 相似文献
19.
Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a unified view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, and mixed-criteria), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear definition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an unified framework providing a common definition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic. 相似文献
20.
J.L. Hurink 《Operations Research Letters》2008,36(1):51-56
We consider online scheduling of parallel jobs on parallel machines. For the problem with two machines and the objective of minimizing the makespan, we show that 2 is a tight lower bound on the competitive ratio. For the problem with m machines, we derive lower bounds using an ILP formulation. 相似文献