首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Promethee II is a prominent method for multi-criteria decision aid (MCDA) that builds a complete ranking on a set of potential actions by assigning each of them a so-called net flow score. However, to calculate these scores, each pair of actions has to be compared, causing the computational load to increase quadratically with the number of actions, eventually leading to prohibitive execution times for large decision problems. For some problems, however, a trade-off between the ranking’s accuracy and the required evaluation time may be acceptable. Therefore, we propose a piecewise linear model that approximates Promethee II’s net flow scores and reduces the computational complexity (with respect to the number of actions) from quadratic to linear at the cost of some wrongly ranked actions. Simulations on artificial problem instances allow us to quantify this time/quality trade-off and to provide probabilistic bounds on the problem size above which our model satisfyingly approximates Promethee II’s rankings. They show, for instance, that for decision problems of 10,000 actions evaluated on 7 criteria, the Pearson correlation coefficient between the original scores and our approximation is of at least 0.97. When put in balance with computation times that are more than 7000 times faster than for the Promethee II model, the proposed approximation model represents an interesting alternative for large problem instances.  相似文献   

2.
We show the importance of exploiting the complementary convex structure for efficiently solving a wide class of specially structured nonconvex global optimization problems. Roughly speaking, a specific feature of these problems is that their nonconvex nucleus can be transformed into a complementary convex structure which can then be shifted to a subspace of much lower dimension than the original underlying space. This approach leads to quite efficient algorithms for many problems of practical interest, including linear and convex multiplicative programming problems, concave minimization problems with few nonlinear variables, bilevel linear optimization problems, etc...  相似文献   

3.
This paper discusses an algorithm for generalized convex multiplicative programming problems, a special class of nonconvex minimization problems in which the objective function is expressed as a sum ofp products of two convex functions. It is shown that this problem can be reduced to a concave minimization problem with only 2p variables. An outer approximation algorithm is proposed for solving the resulting problem.  相似文献   

4.
A class of nonconvex minimization problems can be classified as hidden convex minimization problems. A nonconvex minimization problem is called a hidden convex minimization problem if there exists an equivalent transformation such that the equivalent transformation of it is a convex minimization problem. Sufficient conditions that are independent of transformations are derived in this paper for identifying such a class of seemingly nonconvex minimization problems that are equivalent to convex minimization problems. Thus, a global optimality can be achieved for this class of hidden convex optimization problems by using local search methods. The results presented in this paper extend the reach of convex minimization by identifying its equivalent with a nonconvex representation.  相似文献   

5.
In this paper, we present the Promethee methods, a new class of outranking methods in multicriteria analysis. Their main features are simplicity, clearness and stability. The notion of generalized criterion is used to construct a valued outranking relation. All the parameters to be defined have an economic signification, so that the decision maker can easily fix them. Two ways of treatment are proposed: It is possible to obtain either a partial preorder (Promethee I) or a complete one (Promethee II), both on a finite set of feasible actions. A comparison is made with the Electre III method. The stability of the results given by the two methods is analysed. Numerical applications are given in order to illustrate the properties of the new methods and some further problems are discussed.  相似文献   

6.
We derive a global regularity theorem for stress fields which correspond to minimizers of convex and some special nonconvex variational problems with mixed boundary conditions on admissible domains. These are Lipschitz domains satisfying additional geometric conditions near those points, where the type of the boundary conditions changes. In the first part it is assumed that the energy densities defining the variational problem are convex but not necessarily strictly convex and satisfy a convexity inequality. The regularity result for this case is derived with a difference quotient technique. In the second part the regularity results are carried over from the convex case to special nonconvex variational problems taking advantage of the relation between nonconvex variational problems and the corresponding (quasi-) convexified problems. The results are applied amongst others to the variational problems for linear elasticity, the p-Laplace operator, Hencky elasto-plasticity with linear hardening and for scalar and vectorial two-well potentials (compatible case).   相似文献   

7.
A new efficient branch and bound method is proposed for solving convex programs with an additional monotonic nonconvex constraint. Computational experiments demonstrated that this method is quite practical for solving rank k reverse convex programs with much higher values of k than previously considered in the literature and can be applied to a wider class of nonconvex problems.  相似文献   

8.
Efficient, weakly and properly Pareto optimal solutions of multiobjective optimization problems can be characterized with the help of different cones. Here, contingent, tangent and normal cones as well as cones of feasible directions are used in the characterizations. The results are first presented in convex cases and then generalized to nonconvex cases by employing local concepts.  相似文献   

9.
The subject of this article is a class of global optimization problems, in which the variables can be divided into two groups such that, in each group, the functions involved have the same structure (e.g. linear, convex or concave, etc.). Based on the decomposition idea of Benders (Ref. 1), a corresponding master problem is defined on the space of one of the two groups of variables. The objective function of this master problem is in fact the optimal value function of a nonlinear parametric optimization problem. To solve the resulting master problem, a branch-and-bound scheme is proposed, in which the estimation of the lower bounds is performed by applying the well-known weak duality theorem in Lagrange duality. The results of this article concentrate on two subjects: investigating the convergence of the general algorithm and solving dual problems of some special classes of nonconvex optimization problems. Based on results in sensitivity and stability theory and in parametric optimization, conditions for the convergence are established by investigating the so-called dual properness property and the upper semicontinuity of the objective function of the master problem. The general algorithm is then discussed in detail for some nonconvex problems including concave minimization problems with a special structure, general quadratic problems, optimization problems on the efficient set, and linear multiplicative programming problems.  相似文献   

10.
We describe a general scheme for solving nonconvex optimization problems, where in each iteration the nonconvex feasible set is approximated by an inner convex approximation. The latter is defined using an upper bound on the nonconvex constraint functions. Under appropriate conditions, a monotone convergence to a KKT point is established. The scheme is applied to truss topology design (TTD) problems, where the nonconvex constraints are associated with bounds on displacements and stresses. It is shown that the approximate convex problem solved at each inner iteration can be cast as a conic quadratic programming problem, hence large scale TTD problems can be efficiently solved by the proposed method.  相似文献   

11.
Some important classes of decision models give rise to nonconvex minimization problems that, by domain or range transformation, are transformable into convex problems. Thus the powerful theoretical results and the efficiency of algorithms in convex programming can be exploited for a wide range of problems. If no convexifying transformation is at hand, one often requires to approximate a nonconvex objective by a convex one. Then a priori as well as post-computational errorbounds are of interest. The purpose of this paper is to outline briefly some of the ideas and results on convexification that may be useful in practice.  相似文献   

12.
The aim of this paper is to present a nonconvex duality with a zero gap and its connection with convex duality. Since a convex program can be regarded as a particular case of convex maximization over a convex set, a nonconvex duality can be regarded as a generalization of convex duality. The generalized duality can be obtained on the basis of convex duality and minimax theorems. The duality with a zero gap can be extended to a more general nonconvex problems such as a quasiconvex maximization over a general nonconvex set or a general minimization over the complement of a convex set. Several applications are given.On leave from the Institute of Mathematics, Hanoi, Vietnam.  相似文献   

13.
Trade-off information related to Pareto optimal solutions is important in multiobjective optimization problems with conflicting objectives. Recently, the concept of trade-off directions has been introduced for convex problems. These trade-offs are characterized with the help of tangent cones. Generalized trade-off directions for nonconvex problems can be defined by replacing convex tangent cones with nonconvex contingent cones. Here we study how the convex concepts and results can be generalized into a nonconvex case. Giving up convexity naturally means that we need local instead of global analysis. Received: December 2000 / Accepted: October 2001?Published online February 14, 2002  相似文献   

14.
In this paper relationships between Pareto points and saddle points are studied in convex and nonconvex multiple objective programming. The analysis is based on partitioning the index sets of objectives and constraints and splitting the original problem into subproblems having a special structure. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. In the nonconvex case, a saddle point characterization of Pareto points is possible under assumptions that guarantee existence of Pareto points and stability conditions of single objective problems. Essentially, these conditions are not stronger than those in analogous results for single objective programming.This research was partially supported by ONR Grant N00014-97-1-784AMS Subject Classification: 90C29, 90C26  相似文献   

15.
In practical applications of mathematical programming it is frequently observed that the decision maker prefers apparently suboptimal solutions. A natural explanation for this phenomenon is that the applied mathematical model was not sufficiently realistic and did not fully represent all the decision makers criteria and constraints. Since multicriteria optimization approaches are specifically designed to incorporate such complex preference structures, they gain more and more importance in application areas as, for example, engineering design and capital budgeting. The aim of this paper is to analyze optimization problems both from a constrained programming and a multicriteria programming perspective. It is shown that both formulations share important properties, and that many classical solution approaches have correspondences in the respective models. The analysis naturally leads to a discussion of the applicability of some recent approximation techniques for multicriteria programming problems for the approximation of optimal solutions and of Lagrange multipliers in convex constrained programming. Convergence results are proven for convex and nonconvex problems.  相似文献   

16.
Several optimization schemes have been known for convex optimization problems. However, numerical algorithms for solving nonconvex optimization problems are still underdeveloped. A significant progress to go beyond convexity was made by considering the class of functions representable as differences of convex functions. In this paper, we introduce a generalized proximal point algorithm to minimize the difference of a nonconvex function and a convex function. We also study convergence results of this algorithm under the main assumption that the objective function satisfies the Kurdyka–?ojasiewicz property.  相似文献   

17.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

18.
This paper presents a global optimization approach for solving signomial geometric programming (SGP) problems. We employ an accelerated extended cutting plane (ECP) approach integrated with piecewise linear (PWL) approximations to solve the global optimization of SGP problems. In this approach, we separate the feasible regions determined by the constraints into convex and nonconvex ones in the logarithmic domain. In the nonconvex feasible regions, the corresponding constraint functions are converted into mixed integer linear constraints using PWL approximations, while the other constraints with convex feasible regions are handled by the ECP method. We also use pre-processed initial cuts and batched cuts to accelerate the proposed algorithm. Numerical results show that the proposed approach can solve the global optimization of SGP problems efficiently and effectively.  相似文献   

19.
We consider mathematical programming problems with the so-called piecewise convex objective functions. A solution method for this interesting and important class of nonconvex problems is presented. This method is based on Newton??s law of universal gravitation, multicriteria optimization and Helly??s theorem on convex bodies. Numerical experiments using well known classes of test problems on piecewise convex maximization, convex maximization as well as the maximum clique problem show the efficiency of the approach.  相似文献   

20.
Multiobjective DC optimization problems arise naturally, for example, in data classification and cluster analysis playing a crucial role in data mining. In this paper, we propose a new multiobjective double bundle method designed for nonsmooth multiobjective optimization problems having objective and constraint functions which can be presented as a difference of two convex (DC) functions. The method is of the descent type and it generalizes the ideas of the double bundle method for multiobjective and constrained problems. We utilize the special cutting plane model angled for the DC improvement function such that the convex and the concave behaviour of the function is captured. The method is proved to be finitely convergent to a weakly Pareto stationary point under mild assumptions. Finally, we consider some numerical experiments and compare the solutions produced by our method with the method designed for general nonconvex multiobjective problems. This is done in order to validate the usage of the method aimed specially for DC objectives instead of a general nonconvex method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号