首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers a finite buffer M/M/c queueing system in which servers are unreliable and follow a (d, c) vacation policy. With such a policy, at a service completion instant, if the number of customers is reduced to c − d (c > d), the d idle servers together take a vacation (or leave for a random amount of time doing other secondary job). When these d servers return from a vacation and if still no more than c − d customers are in the system, they will leave for another vacation and so on, until they find at least c − d + 1 customers are in the system at a vacation completion instant, and then they return to serve the queue. This study is motivated by the fact that some practical production and inventory systems or call centers can be modeled as this finite-buffer Markovian queue with unreliable servers and (d, c) vacation policy. Using the Markovian process model, we obtain the stationary distribution of the number of customers in the system numerically. Some cost relationships among several related systems are used to develop a finite search algorithm for the optimal policy (d, c) which maximizes the long-term average profit. Numerical results are presented to illustrate the usefulness of such a algorithm for examining the effects of system parameters on the optimal policy and its associated average profit.  相似文献   

2.
This paper deals with the steady-state behaviour of an M/G/1 queue with an additional second phase of optional service subject to breakdowns occurring randomly at any instant while serving the customers and delayed repair. This model generalizes both the classical M/G/1 queue subject to random breakdown and delayed repair as well as M/G/1 queue with second optional service and server breakdowns. For this model, we first derive the joint distributions of state of the server and queue size, which is one of chief objectives of the paper. Secondly, we derive the probability generating function of the stationary queue size distribution at a departure epoch as a classical generalization of Pollaczek–Khinchin formula. Next, we derive Laplace Stieltjes transform of busy period distribution and waiting time distribution. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

3.
We consider an M[x]/G/1 queueing system with a startup time, where all arriving customers demand first the essential service and some of them may further demand one of other optional services: Type 1, Type 2, … , and Type J service. The service times of the essential service and of the Type i  (i=1,2,…,J)(i=1,2,,J) service are assumed to be random variables with arbitrary distributions. The server is turned off each time when the system is empty. As soon as a customer or a batch of customers arrives, the server immediately performs a startup which is needed before starting each busy period. We derive the steady-state results, including system size distribution at a random epoch and at a departure epoch, the distributions of idle and busy periods, and waiting time distribution in the queue. Some special cases are also presented.  相似文献   

4.
Feng  W.  Kowada  M.  Adachi  K. 《Queueing Systems》1998,30(3-4):405-434
In this paper, we present a detailed analysis of a cyclic-service queueing system consisting of two parallel queues, and a single server. The server serves the two queues with a Bernoulli service schedule described as follows. At the beginning of each visit to a queue, the server always serves a customer. At each epoch of service completion in the ith queue at which the queue is not empty, the server makes a random decision: with probability pi, it serves the next customer; with probability 1-pi, it switches to the other queue. The server takes switching times in its transition from one queue to the other. We derive the generating functions of the joint stationary queue-length distribution at service completion instants, by using the approach of the boundary value problem for complex variables. We also determine the Laplace-Stieltjes transforms of waiting time distributions for both queues, and obtain their mean waiting times. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
This paper analyzes the finite-buffer single server queue with vacation(s). It is assumed that the arrivals follow a batch Markovian arrival process (BMAP) and the server serves customers according to a non-exhaustive type gated-limited service discipline. It has been also considered that the service and vacation distributions possess rational Laplace-Stieltjes transformation (LST) as these types of distributions may approximate many other distributions appeared in queueing literature. Among several batch acceptance/rejection strategies, the partial batch acceptance strategy is discussed in this paper. The service limit L (1 ≤ LN) is considered to be fixed, where N is the buffer-capacity excluding the one in service. It is assumed that in each busy period the server continues to serve until either L customers out of those that were waiting at the start of the busy period are served or the queue empties, whichever occurs first. The queue-length distribution at vacation termination/service completion epochs is determined by solving a set of linear simultaneous equations. The successive substitution method is used in the steady-state equations embedded at vacation termination/service completion epochs. The distribution of the queue-length at an arbitrary epoch has been obtained using the supplementary variable technique. The queue-length distributions at pre-arrival and post-departure epoch are also obtained. The results of the corresponding infinite-buffer queueing model have been analyzed briefly and matched with the previous model. Net profit function per unit of time is derived and an optimal service limit and buffer-capacity are obtained from a maximal expected profit. Some numerical results are presented in tabular and graphical forms.  相似文献   

6.
This paper treats an M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule. Whenever the system becomes empty at a service completion instant, the server goes for a single working vacation. In the working vacation, a customer is served at a lower speed, and if there are customers in the queue at the instant of a service completion, the server is resumed to a regular busy period with probability p   (i.e., the vacation is interrupted) or continues the vacation with probability 1-p1-p. Using the matrix analytic method, we obtain the distribution for the stationary queue length at departure epochs. The joint distribution for the stationary queue length and service status at the arbitrary epoch is also obtained by using supplementary variable technique. We also develop a variety of stationary performance measures for this system and give a conditional stochastic decomposition result. Finally, several numerical examples are presented.  相似文献   

7.
We study a single server queue with batch arrivals and general (arbitrary) service time distribution. The server provides service to customers, one by one, on a first come, first served basis. Just after completion of his service, a customer may leave the system or may opt to repeat his service, in which case this customer rejoins the queue. Further, just after completion of a customer's service the server may take a vacation of random length or may opt to continue staying in the system to serve the next customer. We obtain steady state results in explicit and closed form in terms of the probability generating functions for the number of customers in the queue, the average number of customers and the average waiting time in the queue. Some special cases of interest are discussed and some known results have been derived. A numerical illustration is provided.  相似文献   

8.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

9.
Consider a GI/M/1 queue with start-up period and single working vacation. When the system is in a closed state, an arriving customer leading to a start-up period, after the start-up period, the system becomes a normal service state. And during the working vacation period, if there are customers at a service completion instant, the vacation can be interrupted and the server will come back to the normal working level with probability p (0 ? p ? 1) or continue the vacation with probability 1 − p. Meanwhile, if there is no customer when a vacation ends, the system is closed. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at both arrival epochs and arbitrary epochs, the waiting time and sojourn time.  相似文献   

10.
A classical result for the steady-state queue-length distribution of single-class queueing systems is the following: The distribution of the queue length just before an arrival epoch equals the distribution of the queue length just after a departure epoch. The constraint for this result to be valid is that arrivals, and also service completions, with probability one occur individually, i.e., not in batches. We show that it is easy to write down somewhat similar balance equations for multidimensional queue-length processes for a quite general network of multiclass multiserver queues. We formally derive those balance equations under a general framework. They are called distributional relationships and are obtained for any external arrival process and state-dependent routing as long as certain stationarity conditions are satisfied and external arrivals and service completions do not simultaneously occur. We demonstrate the use of these balance equations, in combination with PASTA, by (1) providing very simple derivations of some known results for polling systems and (2) obtaining new results for some queueing systems with priorities. We also extend the distributional relationships for a nonstationary framework.  相似文献   

11.
Rietman  Ronald  Resing  Jacques 《Queueing Systems》2004,48(1-2):89-102
We analyse an M/G/1 queueing model with gated random order of service. In this service discipline there are a waiting room, in which arriving customers are collected, and a service queue. Each time the service queue becomes empty, all customers in the waiting room are put instantaneously and in random order into the service queue. The service times of customers are generally distributed with finite mean. We derive various bivariate steady-state probabilities and the bivariate Laplace–Stieltjes transform (LST) of the joint distribution of the sojourn times in the waiting room and the service queue. The derivation follows the line of reasoning of Avi-Itzhak and Halfin [4]. As a by-product, we obtain the joint sojourn times LST for several other gated service disciplines.  相似文献   

12.
This paper deals with a single server M/G/1 queue with two phases of heterogeneous service and unreliable server. We assume that customers arrive to the system according to a Poisson process with rate λ. After completion of two successive phases of service the server either goes for a vacation with probability p(0 ? p ? 1) or may continue to serve the next unit, if any, with probability q(=1 ? p). Otherwise it remains in the system until a customer arrives. While the server is working with any phase of service, it may breakdown at any instant and the service channel will fail for a short interval of time. For this model, we first derive the joint distribution of state of the server and queue size, which is one of the chief objectives of the paper. Secondly, we derive the probability generating function of the stationary queue size distribution at a departure epoch. Next, we derive Laplace Stieltjes transform of busy period distribution and waiting time distribution. Finally we obtain some important performance measures and reliability indices of this model.  相似文献   

13.
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.  相似文献   

14.
We consider a finite capacity M/M/R queue with second optional channel. The interarrival times of arriving customers follow an exponential distribution. The service times of the first essential channel and the second optional channel are assumed to follow an exponential distribution. As soon as the first essential service of a customer is completed, a customer may leave the system with probability (1 − θ) or may opt for the second optional service with probability θ (0 ? θ ? 1). Using the matrix-geometric method, we obtain the steady-state probability distributions and various system performance measures. A cost model is established to determine the optimal solutions at the minimum cost. Finally, numerical results are provided to illustrate how the direct search method and the tabu search can be applied to obtain the optimal solutions. Sensitivity analysis is also investigated.  相似文献   

15.
We consider finite buffer single server GI/M/1 queue with exhaustive service discipline and multiple working vacations. Service times during a service period, service times during a vacation period and vacation times are exponentially distributed random variables. System size distributions at pre-arrival and arbitrary epoch with some important performance measures such as, probability of blocking, mean waiting time in the system etc. have been obtained. The model has potential application in the area of communication network, computer systems etc. where a single channel is allotted for more than one source.  相似文献   

16.
This paper investigates a batch arrival retrial queue with general retrial times, where the server is subject to starting failures and provides two phases of heterogeneous service to all customers under Bernoulli vacation schedules. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of two phases of service, the server either goes for a vacation with probability p or may wait for serving the next customer with probability (1 − p). We construct the mathematical model and derive the steady-state distribution of the server state and the number of customers in the system/orbit. Such a model has potential application in transfer model of e-mail system.  相似文献   

17.
This paper deals with the steady state behaviour of an Mx/G/1 queue with general retrial time and Bernoulli vacation schedule for an unreliable server, which consists of a breakdown period and delay period. Here we assume that customers arrive according to compound Poisson processes. While the server is working with primary customers, it may breakdown at any instant and server will be down for short interval of time. Further concept of the delay time is also introduced. The primary customer finding the server busy, down or vacation are queued in the orbit in accordance with FCFS (first come first served) retrial policy. After the completion of a service, the server either goes for a vacation of random length with probability p or may continue to serve for the next customer, if any with probability (1 − p). We carry out an extensive analysis of this model. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

18.
We consider a discrete-time single server N  -policy GI/Geo/1GI/Geo/1 queueing system. The server stops servicing whenever the system becomes empty, and resumes its service as soon as the number of waiting customers in the queue reaches N. Using an embedded Markov chain and a trial solution approach, the stationary queue length distribution at arrival epochs is obtained. Furthermore, we obtain the stationary queue length distribution at arbitrary epochs by using the preceding result and a semi-Markov process. The sojourn time distribution is also presented.  相似文献   

19.
有Bernoulli休假和可选服务的M/G/1重试反馈排队模型   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试反馈排队模型,其中服务台有Bernoulli休假策略.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服从一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.每个顾客每次被服务完成后可以离开系统或者返回到重试区域.服务台完成一次服务以后,可以休假也可以继续为顾客服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到了重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在系统中服务员休假和服务台空闲的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

20.
In this paper we analyze two single server queueing-inventory systems in which items in the inventory have a random common life time. On realization of common life time, all customers in the system are flushed out. Subsequently the inventory reaches its maximum level S through a (positive lead time) replenishment for the next cycle which follows an exponential distribution. Through cancellation of purchases, inventory gets added until their expiry time; where cancellation time follows exponential distribution. Customers arrive according to a Poisson process and service time is exponentially distributed. On arrival if a customer finds the server busy, then he joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in a finite waiting room of capacity K. Finding that at full, he joins a pool of infinite capacity with probability γ (0 < γ < 1); else it is lost to the system forever. We discuss two models based on ‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service completion epoch the waiting room size drops to preassigned number L ? 1 (1 < L < K) or below, a customer is transferred from pool to waiting room with probability p (0 < p < 1) and positioned as the last among the waiting customers. If at a departure epoch the waiting room turns out to be empty and there is at least one customer in the pool, then the one ahead of all waiting in the pool gets transferred to the waiting room with probability one. We introduce a totally different transfer mechanism in Model 2: when at a service completion epoch, the server turns idle with at least one item in the inventory, the pooled customer is immediately taken for service. At the time of a cancellation if the server is idle with none, one or more customers in the waiting room, then the head of the pooled customer go to the buffer directly for service. Also we assume that no customer joins the system when there is no item in the inventory. Several system performance measures are obtained. A cost function is discussed for each model and some numerical illustrations are presented. Finally a comparison of the two models are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号