首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a two-level supply chain with a number of identical, independent ‘retailers’ at the lower echelon and a single supplier at the upper echelon controlled by continuous review inventory policy (RQ). Each retailer experiences Poisson demand with constant transportation times. We assume constant lead time for replenishing supplier orders from an external warehouse to the supplier and unsatisfied retailer orders are backordered in the supplier. We assume that the unsatisfied demand is partially backordered in the identical retailers. The partially backordering policy is implemented in the identical retailers using an explicit control parameter ‘b’ which limits the maximum number of backorders allowed to be accumulated during the lead time. We develop an approximate cost function to find optimal reorder points for given batch sizes in all installations, the optimal value of b in the identical retailers and the related accuracy is assessed through simulation.  相似文献   

2.
We consider a two-echelon inventory system with a number of non-identical, independent ‘retailers’ at the lower echelon and a single ‘supplier’ at the upper echelon. Each retailer experiences Poisson demand and operates a base stock policy with backorders. The supplier manufactures to order and holds no stock. Orders are produced, in first-come first-served sequence, with a fixed production time. The supplier therefore functions as an M/D/1 queue. We are interested in the performance characteristics (average inventory, average backorder level) at each retailer. By finding the distribution of order lead time and hence the distribution of demand during order lead time, we find the steady state inventory and backorder levels based on the assumption that order lead times are independent of demand during order lead time at a retailer. We also propose two alternative approximation procedures based on assumed forms for the order lead time distribution. Finally we provide a derivation of the steady state inventory and backorder levels which will be exact as long as there is no transportation time on orders between the supplier and retailers. A numerical comparison is made between the exact and approximate measures. We conclude by recommending an approach which is intuitive and computationally straightforward.  相似文献   

3.
Stock Rationing in a Continuous Review Two-Echelon Inventory Model   总被引:1,自引:0,他引:1  
In this paper we consider a 1-warehouse, N-retailer inventory system where demand occurs at all locations. We introduce an inventory model which allows us to set different service levels for retailers and direct customer demand at the warehouse. For each retailer a critical level is defined, such that a retailer replenishment order is delivered from warehouse stock if and only if the stock level exceeds this critical level. It is assumed that retailer replenishment orders, which are not satisfied from warehouse stock, are delivered directly from the outside supplier, instead of being backlogged. We present an analytical upper bound on the total cost of the system, and develop a heuristic method to optimize the policy parameters. Numerical experiments indicate that our technique provides a very close approximation of the exact cost. Also, we show that differentiating among the retailers and direct customer demand can yield significant cost reductions.  相似文献   

4.
This paper analyzes a Mixed Continuous-Periodic Review One-Warehouse, N-Retailer inventory system for a single, consumable item. In this system, the warehouse holds stock and the retailers experience independent, stationary field demand. Each retailer follows a continuous review (Q, r) policy. However, the warehouse reviews each retailer according to a review interval T. We discuss the motivation for this warehouse policy and show how its impact on the retailers can be modeled with an (nQ, r, T) policy at the retailers and the warehouse. Then we present an approximate analytical model to predict the performance of such a system under different operating conditions. An interesting aspect of the model is the estimation of warehouse demand variance via a closed form expression derived using renewal theory. We compare the approximate model with a simulation model to test its accuracy. The comparison indicates that the approximate model predicts quite accurately in high fill rate ranges (retailer fill rates of 90% and more). Finally, we propose several extensions to this research.  相似文献   

5.
We study a logistic system in which a supplier has to deliver a set of products to a set of retailers to face a stochastic demand over a given time horizon. The transportation from the supplier to each retailer can be performed either directly, by expensive and fast vehicles, or through an intermediate depot, by less expensive but slower vehicles. At most one time period is required in the former case, while two time periods are needed in the latter case. A variable transportation cost is charged in the former case, while a fixed transportation cost per journey is charged in the latter case. An inventory cost is charged at the intermediate depot. The problem is to determine, for each time period and for each product, the quantity to send from the supplier to the depot, from the depot to each retailer and from the supplier to each retailer, in order to minimize the total expected cost. We first show that the classical benchmark policy, in which the demand of each product at each retailer is set equal to the average demand, can give a solution which is infinitely worse with respect to the optimal solution. Then, we propose two classes of policies to solve this problem. The first class, referred to as Horizon Policies, is composed of policies which require the solution of the overall problem over the time horizon. The second class, referred to as Reoptimization Policies, is composed of a myopic policy and several rolling-horizon policies in which the problem is reoptimized at each time period, once the demand of the time period is revealed. We evaluate the performance of each policy dynamically, by using Monte Carlo Simulation.  相似文献   

6.
Our model deals with a single-product and a single-stock location with Poisson demand. The replenishment leadtime from the external supplier is fixed. The lifetime of the product is also fixed, and aging is assumed to begin when the order is placed. When the age of a unit has reached its lifetime, the unit is useless and thus discarded from the system. The replenishment policy is assumed to be an order-up-to S-policy. Demand that cannot be met immediately is backordered. We consider three different cases where the service requirements are represented by: (1) backorder costs per unit, (2) a service level constraint, (3) backorder costs per unit and time unit. Cases 1 and 2 are solved exactly, while an approximation is developed for case 3. We show how the results from an earlier paper assuming lost sales can be used to solve the considered problems. Our results are compared to the results in a related paper considering (Qr)-policies.  相似文献   

7.
Here a single vendor multiple retailer inventory model of an item is developed where demand of the item at every retailer is linearly dependent on stock and inversely on some powers of selling price. Item is produced by the vendor and is distributed to the retailers following basic period policy. According to this policy item is replenished to the retailers at a regular time interval (T1) called basic period (BP) and replenishment quantity is sufficient to last for the period T1. Due to the scarcity of storage space at market places, every retailer uses a showroom at the market place and a warehouse to store the item, little away from the market place. Item is sold from the showroom and is filled up from the warehouse in a bulk release pattern. Some of the inventory parameters are considered as fuzzy in nature and model is formulated to maximize the average profit from the whole system. Imprecise objective is transformed to equivalent deterministic ones using possibility/necessity measure of fuzzy events with some degree of optimism/pessimism. A genetic algorithm (GA) is developed with roulette wheel selection, arithmetic crossover and random mutation and is used to solve the model. In some complex cases, with the help of above GA, fuzzy simulation process is used to derive the optimal decision. The model is illustrated through numerical examples and some sensitivity analyses are presented.  相似文献   

8.
Let a, n ? 1 be integers and S = {x1, … , xn} be a set of n distinct positive integers. The matrix having the ath power (xixj)a of the greatest common divisor of xi and xj as its i, j-entry is called ath power greatest common divisor (GCD) matrix defined on S, denoted by (Sa). Similarly we can define the ath power LCM matrix [Sa]. We say that the set S consists of finitely many quasi-coprime divisor chains if we can partition S as S = S1 ∪ ? ∪ Sk, where k ? 1 is an integer and all Si (1 ? i ? k) are divisor chains such that (max(Si), max(Sj)) = gcd(S) for 1 ? i ≠ j ? k. In this paper, we first obtain formulae of determinants of power GCD matrices (Sa) and power LCM matrices [Sa] on the set S consisting of finitely many quasi-coprime divisor chains with gcd(S) ∈ S. Using these results, we then show that det(Sa)∣det(Sb), det[Sa]∣det[Sb] and det(Sa)∣det[Sb] if ab and S consists of finitely many quasi-coprime divisor chains with gcd(S) ∈ S. But such factorizations fail to be true if such divisor chains are not quasi-coprime.  相似文献   

9.
The main purpose of this paper is to investigate the optimal retailer’s replenishment decisions under two levels of trade credit policy within the economic production quantity (EPQ) framework. We assume that the supplier would offer the retailer a delay period and the retailer also adopts the trade credit policy to stimulate his/her customer demand to develop the retailer’s replenishment model under the replenishment rate is finite. Furthermore, we assume that the retailer’s trade credit period offered by supplier M is not shorter than the customer’s trade credit period offered by retailer N (M ? N). Since the retailer cannot earn any interest in this situation, M < N.  相似文献   

10.
We study determinant inequalities for certain Toeplitz-like matrices over C. For fixed n and N ? 1, let Q be the n × (n + N − 1) zero-one Toeplitz matrix with Qij = 1 for 0 ? j − i ? N − 1 and Qij = 0 otherwise. We prove that det(QQ) is the minimum of det(RR) over all complex matrices R with the same dimensions as Q satisfying ∣Rij∣ ? 1 whenever Qij = 1 and Rij = 0 otherwise. Although R has a Toeplitz-like band structure, it is not required to be actually Toeplitz. Our proof involves Alexandrov’s inequality for polarized determinants and its generalizations. This problem is motivated by Littlewood’s conjecture on the minimum 1-norm of N-term exponential sums on the unit circle. We also discuss polarized Bazin-Reiss-Picquet identities, some connections with k-tree enumeration, and analogous conjectured inequalities for the elementary symmetric functions of QQ.  相似文献   

11.
A number of recent articles in the literature have argued the case, when lead time is variable, for splitting a replenishment order for Q between n suppliers by comparing this with the alternative of placing a single order for Q on one supplier. The split order compares favourably on the grounds that the arrival of the first component of a split order cannot be later than the arrival of an order from any one specified supplier. This note argues that an alternative comparison could be made with a policy of ordering Q/n from a single supplier (n times as often). It makes this comparison in the context of a continuous review (Q, r) inventory model but does so not by comparing aggregate costs but by fixing Q and the customer stock service level and comparing the average stock — an approach which is more appropriate to how many companies manage inventory in practice. We consider Poisson and deterministic demand processes, a general lead time distribution and both lost sales and backorder models.  相似文献   

12.
A firm receives orders that will be required at an uncertain time given by an Erlang distribution, and over time observes the associated independent exponential events. The firm, in turn, places orders at a linear cost from a supplier with fixed lead time l and has the option of converting (expediting) each order, at a cost, over a certain time interval after the order is originally placed. A converted order arrives le < l units of time after it is converted. We show that a threshold policy is optimal. Under such a policy the firm places an order after a certain number of exponential events have been observed. An order is converted the first time, if any, when the residual lead time exceeds a time threshold related to the number of exponential events realized since the order was placed.  相似文献   

13.
We consider a periodic-review inventory system with two suppliers: an unreliable regular supplier that may be disrupted for a random duration, and a reliable backup supplier that can be used during a disruption. The backup supplier charges higher unit purchasing cost and fixed order cost when compared to the regular supplier. Because the backup supplier is used at unplanned moments, its capacity to replenish inventory is considered limited. Analytical results partially characterize the structure of the optimal order policy: a state-dependent (X(i), Y(i)) band structure (with corresponding bounds of X(i) and Y(i) to be given), where i represents the status of the regular supplier. Numerical studies illustrate the structure of the optimal policy and investigate the impacts of major parameters on optimal order decisions and system costs.  相似文献   

14.
Let S = {x1, … , xn} be a set of n distinct positive integers and f be an arithmetical function. Let [f(xixj)] denote the n × n matrix having f evaluated at the greatest common divisor (xixj) of xi and xj as its ij-entry and (f[xixj]) denote the n × n matrix having f evaluated at the least common multiple [xixj] of xi and xj as its ij-entry. The set S is said to be lcm-closed if [xixj] ∈ S for all 1 ? i, j ? n. For an integer x > 1, let ω(x) denote the number of distinct prime factors of x. Define ω(1) = 0. In this paper, we show that if S = {x1, … , xn} is an lcm-closed set satisfying , and if f is a strictly increasing (resp. decreasing) completely multiplicative function, or if f is a strictly decreasing (resp. increasing) completely multiplicative function satisfying (resp. f(p) ? p) for any prime p, then the matrix [f(xixj)] (resp. (f[xixj])) defined on S is nonsingular. By using the concept of least-type multiple introduced in [S. Hong, J. Algebra 281 (2004) 1-14], we also obtain reduced formulas for det(f(xixj)) and det(f[xixj]) when f is completely multiplicative and S is lcm-closed. We also establish several results about the nonsingularity of LCM matrices and reciprocal GCD matrices.  相似文献   

15.
In this paper we show how to exactly evaluate holding and shortage costs for a two-level inventory system with one warehouse and N different retailers. Lead-times (transportation times) are constant, and the retailers face different Poisson demand processes. All facilities apply continuous review (R, Q)-policies. We express the policy costs as a weighted mean of costs for one-for-one ordering policies.  相似文献   

16.
We consider a time-based inventory control policy for a two-level supply chain with one warehouse and multiple retailers in this paper. Let the warehouse order in a fixed base replenishment interval. The retailers are required to order in intervals that are integer-ratio multiples of the base replenishment interval at the warehouse. The warehouse and the retailers each adopt an order-up-to policy, i.e. order the needed stock at a review point to raise the inventory position to a fixed order-up-to level. It is assumed that the retailers face independent Poisson demand processes and no transshipments between them are allowed. The contribution of the study is threefold. First, we assume that when facing a shortage the warehouse allocates the remaining stock to the retailers optimally to minimize system cost in the last minute before delivery and provide an approach to evaluate the exact system cost. Second, we characterize the structural properties and develop an exact optimal solution for the inventory control system. Finally, we demonstrate that the last minute optimal warehouse stock allocation rule we adopt dominates the virtual allocation rule in which warehouse stock is allocated to meet retailer demand on a first-come first-served basis with significant cost benefits. Moreover, the proposed time-based inventory control policy can perform equally well or better than the commonly used stock-based batch-ordering policy for distribution systems with multiple retailers.  相似文献   

17.
In this paper, we quantify the impact of the bullwhip effect – the phenomenon in which information on demand is distorted as moving up a supply chain – for a simple two-stage supply chain with one supplier and one retailer. Assuming that the retailer employs a base stock inventory policy, and that the demand forecast is performed via a mixed autoregressive-moving average model, ARMA(1, 1), we investigate the effects of the autoregressive coefficient, the moving average parameter, and the lead time on the bullwhip effect.  相似文献   

18.
This paper considers the problem of allocating warehouse inventory to retailers where retailer orders and the replenishment of warehouse inventory occur periodically on a fixed schedule. We assume that the warehouse and the retailers have the opportunity to exchange demand information through Electronic Data Interchange (EDI). At the warehouse level, for instance, the available information on the retailer's demand may be utilized in determining the shipment quantities needed to meet the desired service level to the retailers. Unlike similar models focusing primarily on optimizing systems wide performance measures, in this paper we focus on the service level furnished to the retailers by the warehouse. To this end, three different allocation policies are considered: static, myopic, and dynamic rules characterizing the impact of available demand information on the resulting service levels. Numerical illustrations exemplify the allocation rules considered. An interesting though counter intuitive observation is that the existence of additional demand information cannot, a prior, be assumed superior.  相似文献   

19.
20.
Super connectivity is an important issue in interconnection networks. It has been shown that if a network possesses the super connectivity property, it has a high reliability and a small vertex failure rate. Many interconnection networks, like the hypercubes, twisted-cubes, crossed-cubes, möbius cubes, split-stars, and recursive circulant graphs, are proven to be super connected; and the augmented cubes are maximum connected. However, each network vertex has a higher degree as long as the number of vertices increases exponentially. For example, each vertex of the hypercube Qn has a degree of n, and each vertex of the augmented cube AQn has a degree of 2n − 1. In this paper, we not only show that the augmented cube AQn is super connected for n = 1, 2 and n ? 4, but also propose a variation of AQn, denoted by AQn,i, such that V(AQn,i) = V(AQn), E(AQn,i) ⊆ E(AQn), and AQn,i is i-regular with n ? 3 and 3 ? i ? 2n − 1, in which AQn,i is also super connected. In addition, we state the diameter of AQn,i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号