首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selecting optimal location is a key decision problem in business and engineering. This research focuses to develop mathematical models for a special type of location problems called grid-based location problems. It uses a real-world problem of placing lights in a park to minimize the amount of darkness and excess supply. The non-linear nature of the supply function (arising from the light physics) and heterogeneous demand distribution make this decision problem truly intractable to solve. We develop ILP models that are designed to provide the optimal solution for the light post problem: the total number of light posts, the location of each light post, and their capacities (i.e., brightness). Finally, the ILP models are implemented within a standard modeling language and solved with the CPLEX solver. Results show that the ILP models are quite efficient in solving moderately sized problems with a very small optimality gap.  相似文献   

2.
We consider a cement delivery problem with an heterogeneous fleet of vehicles and several depots. The demands of the customers are typically larger than the capacity of the vehicles which means that most customers are visited several times. This is a split delivery vehicle routing problem with additional constraints. We first propose a two phase solution method that assigns deliveries to the vehicles, and then builds vehicle routes. Both subproblems are formulated as integer linear programming problems. We then show how to combine the two phases in a single integer linear program. Experiments on real life instances are performed to compare the performance of the two solution methods.  相似文献   

3.
This paper considers the maximum betweenness problem. A new mixed integer linear programming (MILP) formulation is presented and validity of this formulation is given. Experimental results are performed on randomly generated instances from the literature. The results of CPLEX solver, based on the proposed MILP formulation, are compared with results obtained by total enumeration technique. The results show that CPLEX optimally solves instances of up to 30 elements and 60 triples in a short period of time.  相似文献   

4.
Lot sizing procedures for discrete and dynamic demand form a distinct class of inventory control problems, usually referred to asmaterial requirements planning. A general integer programming formulation is presented, covering an extensive range of problems: single-item, multi-item, and multi-level optimization; conditions on lot sizes and time phasing; conditions on storage and production capacities; and changes in production and storage costs per unit. The formulation serves as a uniform framework for presenting a problem and a starting point for developing and evaluating heuristic and tailor-made optimum-seeking techniques.  相似文献   

5.
This paper investigates the simple uncapacitated plant location problem on a line. We show that under general conditions the special structure of the problem allows the optimal solution to be obtained directly from a linear programming relaxation. This result may be extended to the related p-median problem on a line. Thus, the practitioner is now able to use readily available LP codes in place of specialized algorithms to solve these one-dimensional models. The findings also shed some light on the “integer friendliness” of the general problem.  相似文献   

6.
We generalise polyhedral projection (Fourier–Motzkin elimination) to integer programming (IP) and derive from this an alternative perspective on IP that parallels the classical theory. We first observe that projection of an IP yields an IP augmented with linear congruence relations and finite-domain variables, which we term a generalised IP. The projection algorithm can be converted to a branch-and-bound algorithm for generalised IP in which the search tree has bounded depth (as opposed to conventional branching, in which there is no bound). It also leads to valid inequalities that are analogous to Chvátal–Gomory cuts but are derived from congruences rather than rounding, and whose rank is bounded by the number of variables. Finally, projection provides an alternative approach to IP duality. It yields a value function that consists of nested roundings as in the classical case, but in which ordinary rounding is replaced by rounding to the nearest multiple of an appropriate modulus, and the depth of nesting is again bounded by the number of variables. For large perturbations of the right-hand sides, the value function is shift periodic and can be interpreted economically as yielding “average” shadow prices.  相似文献   

7.
The process of designing new industrial products is in many cases solely based on the intuition and experience of the responsible design engineer. The aid of computers is restricted to visualization and manual manipulation tools. We demonstrate that the design process for conduits, which are made out of sheet metal plates, can be supported by mathematical optimization models and solution techniques, leading to challenging optimization problems. The design goal is to find a topology that consists of several channels with a given cross section area using a minimum amount of sheet metal and, at the same time, maximizing its stiffness. We consider a mixed integer linear programming model to describe the topology of two dimensional slices of a three dimensional sheet metal product. We give different model formulations, based on cuts and on multicommodity flows. Numerical results for various test instances are presented.  相似文献   

8.
The last decade has seen paper-and-pencil (P&P) tests being replaced by computerized adaptive tests (CATs) within many testing programs. A CAT may yield several advantages relative to a conventional P&P test. A CAT can determine the questions or test items to administer, allowing each test form to be tailored to a test taker’s skill level. Subsequent items can be chosen to match the capability of the test taker. By adapting to a test taker’s ability, a CAT can acquire more information about a test taker while administering fewer items. A Multiple Stage Adaptive test (MST) provides a means to implement a CAT that allows review before the administration. The MST format is a hybrid between the conventional P&P and CAT formats. This paper presents mixed integer programming models for MST assembly problems. Computational results with commercial optimization software will be given and advantages of the models evaluated.  相似文献   

9.
We propose an algorithm based on Barvinok's counting algorithm for . It runs in time polynomial in the input size of when n is fixed, and under a condition on c, provides the optimal value of . We also relate Barvinok's counting formula and Gomory relaxations.  相似文献   

10.
The decision problem considered in this paper is a hierarchical workforce scheduling problem in which a higher qualified worker can substitute for a lower qualified one, but not vice versa, labour requirements may vary, and each worker must receive n off-days a week. Within this context, five mathematical models are discussed. The first two of these five models are previously published. Both of them are for the case where the work is indivisible. The remaining three models are developed by the authors of this paper. One of these new models is for the case where the work is indivisible and the other two are for the case where the work is divisible. The three new models are proposed with the purpose of removing the shortcomings of the previously published two models. All of the five models are applied on the same illustrative example. Additionally, a total of 108 test problems are solved within the context of two computational experiments.  相似文献   

11.
We consider linear programming (continuous or integer) where some matrix entries are decision parameters. If the variables are nonnegative the problem can be easily solved in two phases. It is shown that direct costs on the matrix entries make the problem NP-hard. Finally, a strong duality result is provided.  相似文献   

12.
We study a class of mixed-integer programs for solving linear programs with joint probabilistic constraints from random right-hand side vectors with finite distributions. We present greedy and dual heuristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While we demonstrate through an extensive computational study the effectiveness and scalability of our heuristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far from optimal. Our computational study compares our heuristics against both the extended mixed-integer programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics efficiently and consistently produce solutions with small optimality gaps, while for larger instances the extended formulation becomes intractable and the optimality gaps from the cutting plane method increase to over 5%.  相似文献   

13.
The splitting of variables in an integer programming model into the sum of other variables can allow the constraints to be disaggregated, leading to a more constrained (tighter) linear programming relaxation. Well known examples of such reformulations are quoted from the literature. They can be viewed as instances of some general methods of performing such reformulations, namely disjunctive formulations, partial network reformulations and a method based on the introduction of auxiliary variables.  相似文献   

14.
New algorithms based on mixed integer programming formulations are proposed for reactive scheduling in a dynamic, make-to-order manufacturing environment. The problem objective is to update a long-term production schedule subject to service level and inventory constraints, whenever the customer orders are modified or new orders arrive. Different rescheduling policies are proposed, from a total reschedule of all remaining and unmodified customer orders to a non-reschedule of all such orders. In addition, a medium restrictive policy is considered for rescheduling only a subset of remaining customer orders awaiting material supplies. Numerical examples modeled after a real-world scheduling/rescheduling of customer orders in the electronics industry are presented and some results of computational experiments are reported.  相似文献   

15.
This paper is concerned with porfolio optimization problems with integer constraints. Such problems include, among others mean-risk problems with nonconvex transaction cost, minimal transaction unit constraints and cardinality constraints on the number of assets in a portfolio. These problems, though practically very important have been considered intractable because we have to solve nonlinear integer programming problems for which there exists no efficient algorithms. We will show that these problems can now be solved by the state- of-the-art integer programming methodologies if we use absolute deviation as the measure of risk.  相似文献   

16.
We consider the k-Hyperplane Clustering problem where, given a set of m   points in RnRn, we have to partition the set into k subsets (clusters) and determine a hyperplane for each of them, so as to minimize the sum of the squares of the Euclidean distances between the points and the hyperplane of the corresponding clusters. We give a nonconvex mixed-integer quadratically constrained quadratic programming formulation for the problem. Since even very small-size instances are challenging for state-of-the-art spatial branch-and-bound solvers like Couenne, we propose a heuristic in which many “critical” points are reassigned at each iteration. Such points, which are likely to be ill-assigned in the current solution, are identified using a distance-based criterion and their number is progressively decreased to zero. Our algorithm outperforms the best available one proposed by Bradley and Mangasarian on a set of real-world and structured randomly generated instances. For the largest instances, we obtain an average improvement in the solution quality of 54%.  相似文献   

17.
It is well known that mixed-integer formulations can be used tomodel important classes of nonconvex functions, such as fixed-charge functions and linear economy-of-scale cost functions. The purpose of this paper is to formulate a rigorous definition of a mixed-integer model of a given function and to study the properties of the functions that can be so modelled. An interesting byproduct of this approach is the identification of a simple class of functions that cannot be modelled by computer-representable mixed-integer formulations, even though mixed-integer models based on the use of a single arbitrary irrational constant are available for this class.This research was sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.  相似文献   

18.
One of the most promising solutions to deal with huge data traffic demands in large communication networks is given by flexible optical networking, in particular the flexible grid (flexgrid) technology specified in the ITU-T standard G.694.1. In this specification, the frequency spectrum of an optical fiber link is divided into narrow frequency slots. Any sequence of consecutive slots can be used as a simple channel, and such a channel can be switched in the network nodes to create a lightpath. In this kind of networks, the problem of establishing lightpaths for a set of end-to-end demands that compete for spectrum resources is called the routing and spectrum allocation problem (RSA). Due to its relevance, this problem has been intensively studied in the last couple of years. It has been shown to be NP-hard (Christodoulopoulos et al. in IEEE J Lightw Technol 29(9):1354–1366, 2011; Wang et al. in IEEE J Opt Commun Netw 4(11):906–917, 2012) and several models and formulations have been proposed, leading to different solution approaches. In this work, we explore integer programming models for RSA, analyzing their effectiveness over known instances. We resort to several modeling techniques, to find natural formulations of this problem. Since integer programming techniques are known to provide successful practical approaches for several combinatorial optimization problems, the aim of this work is to explore a similar approach for RSA.  相似文献   

19.
This paper presents two new dynamic programming (DP) algorithms to find the exact Pareto frontier for the bi-objective integer knapsack problem. First, a property of the traditional DP algorithm for the multi-objective integer knapsack problem is identified. The first algorithm is developed by directly using the property. The second algorithm is a hybrid DP approach using the concept of the bound sets. The property is used in conjunction with the bound sets. Next, the numerical experiments showed that a promising partial solution can be sometimes discarded if the solutions of the linear relaxation for the subproblem associated with the partial solution are directly used to estimate an upper bound set. It means that the upper bound set is underestimated. Then, an extended upper bound set is proposed on the basis of the set of linear relaxation solutions. The efficiency of the hybrid algorithm is improved by tightening the proposed upper bound set. The numerical results obtained from different types of bi-objective instances show the effectiveness of the proposed approach.  相似文献   

20.
In this paper, a new variable reduction technique is presented for general integer quadratic programming problem (GP), under which some variables of (GP) can be fixed at zero without sacrificing optimality. A sufficient condition and a necessary condition for the identification of dominated terms are provided. By comparing the given data of the problem and the upper bound of the variables, if they meet certain conditions, some variables can be fixed at zero. We report a computational study to demonstrate the efficacy of the proposed technique in solving general integer quadratic programming problems. Furthermore, we discuss separable integer quadratic programming problems in a simpler and clearer form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号