共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a new (MIP) model formulation and a new solution procedure for the hub network design problem under a non-restrictive policy introduced by Sung and Jin [Sung, C.S., Jin, H.W., 2001. Dual-based approach for a hub network design problem under non-restrictive policy. European Journal of Operational Research 132 (1), 88–105]. The model formulation contains significantly fewer variables so that optimal solutions for the LP-relaxation of the model can be determined for large instances using standard procedures for LP-models. Furthermore, the LP-relaxation provides very tight lower bounds. Computational results are given, which demonstrate that the new model formulation allows for solving much larger instances. It turned out that the new (exact) solution procedure, which utilises the new model formulation, is faster than the heuristic proposed by Sung and Jin (2001). It is also shown that the problem is np-hard. 相似文献
2.
Stochastic uncapacitated hub location 总被引:1,自引:0,他引:1
Ivan Contreras Jean-François Cordeau Gilbert Laporte 《European Journal of Operational Research》2011,212(3):518-528
We study stochastic uncapacitated hub location problems in which uncertainty is associated to demands and transportation costs. We show that the stochastic problems with uncertain demands or dependent transportation costs are equivalent to their associated deterministic expected value problem (EVP), in which random variables are replaced by their expectations. In the case of uncertain independent transportation costs, the corresponding stochastic problem is not equivalent to its EVP and specific solution methods need to be developed. We describe a Monte-Carlo simulation-based algorithm that integrates a sample average approximation scheme with a Benders decomposition algorithm to solve problems having stochastic independent transportation costs. Numerical results on a set of instances with up to 50 nodes are reported. 相似文献
3.
This article deals with the uncapacitated multiple allocation p-hub median problem, where p facilities (hubs) must be located among n available sites in order to minimize the transportation cost of sending a product between all pairs of sites. Each path between an origin and a destination can traverse any pair of hubs. 相似文献
4.
We formulate and solve a new hub location and pricing problem, describing a situation in which an existing transportation company operates a hub and spoke network, and a new company wants to enter into the same market, using an incomplete hub and spoke network. The entrant maximizes its profit by choosing the best hub locations and network topology and applying optimal pricing, considering that the existing company applies mill pricing. Customers’ behavior is modeled using a logit discrete choice model. We solve instances derived from the CAB dataset using a genetic algorithm and a closed expression for the optimal pricing. Our model confirms that, in competitive settings, seeking the largest market share is dominated by profit maximization. We also describe some conditions under which it is not convenient for the entrant to enter the market. 相似文献
5.
In the two-stage uncapacitated facility location problem, a set of customers is served from a set of depots which receives the product from a set of plants. If a plant or depot serves a product, a fixed cost must be paid, and there are different transportation costs between plants and depots, and depots and customers. The objective is to locate plants and depots, given both sets of potential locations, such that each customer is served and the total cost is as minimal as possible. In this paper, we present a mixed integer formulation based on twice-indexed transportation variables, and perform an analysis of several Lagrangian relaxations which are obtained from it, trying to determine good lower bounds on its optimal value. Computational results are also presented which support the theoretical potential of one of the relaxations. 相似文献
6.
This paper investigates the simple uncapacitated plant location problem on a line. We show that under general conditions the
special structure of the problem allows the optimal solution to be obtained directly from a linear programming relaxation.
This result may be extended to the related p-median problem on a line. Thus, the practitioner is now able to use readily available
LP codes in place of specialized algorithms to solve these one-dimensional models. The findings also shed some light on the
“integer friendliness” of the general problem. 相似文献
7.
Jamie Ebery Mohan Krishnamoorthy Andreas Ernst Natashia Boland 《European Journal of Operational Research》2000,120(3)
In this paper we consider and present formulations and solution approaches for the capacitated multiple allocation hub location problem. We present a new mixed integer linear programming formulation for the problem. We also construct an efficient heuristic algorithm, using shortest paths. We incorporate the upper bound obtained from this heuristic in a linear-programming-based branch-and-bound solution procedure. We present the results of extensive computational experience with both the heuristic and the exact methods. 相似文献
8.
《Applied Mathematical Modelling》2014,38(7-8):2118-2129
This paper considers the multi level uncapacitated facility location problem (MLUFLP). A new mixed integer linear programming (MILP) formulation is presented and validity of this formulation is given. Experimental results are performed on instances known from literature. The results achieved by CPLEX and Gurobi solvers, based on the proposed MILP formulation, are compared to the results obtained by the same solvers on the already known formulations. The results show that CPLEX and Gurobi can optimally solve all small and medium sized instances and even some large-scale instances using the new formulation. 相似文献
9.
Inmaculada Rodríguez-Martín Juan José Salazar-González 《European Journal of Operational Research》2008
In this paper we address a problem consisting of determining the routes and the hubs to be used in order to send, at minimum cost, a set of commodities from sources to destinations in a given capacitated network. The capacities and costs of the arcs and hubs are given, and the arcs connecting the hubs are not assumed to create a complete graph. We present a mixed integer linear programming formulation and describe two branch-and-cut algorithms based on decomposition techniques. We evaluate and compare these algorithms on instances with up to 25 commodities and 10 potential hubs. One of the contributions of this paper is to show that a Double Benders’ Decomposition approach outperforms the standard Benders’ Decomposition, which has been widely used in recent articles on similar problems. For larger instances we propose a heuristic approach based on a linear programming relaxation of the mixed integer model. The heuristic turns out to be very effective and the results of our computational experiments show that near-optimal solutions can be derived rapidly. 相似文献
10.
Selecting optimal location is a key decision problem in business and engineering. This research focuses to develop mathematical models for a special type of location problems called grid-based location problems. It uses a real-world problem of placing lights in a park to minimize the amount of darkness and excess supply. The non-linear nature of the supply function (arising from the light physics) and heterogeneous demand distribution make this decision problem truly intractable to solve. We develop ILP models that are designed to provide the optimal solution for the light post problem: the total number of light posts, the location of each light post, and their capacities (i.e., brightness). Finally, the ILP models are implemented within a standard modeling language and solved with the CPLEX solver. Results show that the ILP models are quite efficient in solving moderately sized problems with a very small optimality gap. 相似文献
11.
Farzin Taghipourian Iraj Mahdavi Nezam Mahdavi-Amiri Ahmad Makui 《Applied Mathematical Modelling》2012
Hub location problem has been used in transportation network to exploit economies of scale. For example, a controversial issue in the planning of air transportation networks is inclement weather or emergency conditions. In this situation, hub facilities would not be able to provide a good service to their spoke nodes temporarily. Thus, some other kinds of predetermined underutilized facilities in the network are used as virtual hubs to host some or all connections of original hubs to recover the incurred incapacitation and increase network flexibility and demand flow. In such an unexpected situation, it is not unreasonable to expect that some information be imprecise or vague. To deal with this issue, fuzzy concept is used to pose a more realistic problem. Here, we present a fuzzy integer liner programming approach to propose a dynamic virtual hub location problem with the aim of minimizing transportation cost in the network. We examine the effectiveness of our model using the well-known CAB data set. 相似文献
12.
This paper introduced a stochastic programming model to address the air freight hub location and flight routes planning under seasonal demand variations. Most existing approaches to airline network design problems are restricted to a deterministic environment. However, the demand in the air freight market usually varies seasonally. The model is separated into two decision stages. The first stage, which is the decision not affected by randomness, determines the number and the location of hubs. The second stage, which is the decision affected by randomness, determines the flight routes to transport flows from origins to destinations based upon the hub location and realized uncertain scenario. Finally, the real data based on the air freight market in Taiwan and China is used to test the proposed model. 相似文献
13.
Isabel Correia Stefan Nickel Francisco Saldanha-da-Gama 《European Journal of Operational Research》2010
In this paper a well-known formulation for the capacitated single-allocation hub location problem is revisited. An example is presented showing that for some instances this formulation is incomplete. The reasons for the incompleteness are identified leading to the inclusion of an additional set of constraints. Computational experiments are performed showing that the new constraints also help to decrease the computational time required to solve the problem optimally. 相似文献
14.
In this paper, we develop a novel stochastic multi-objective multi-mode transportation model for hub covering location problem under uncertainty. The transportation time between each pair of nodes is an uncertain parameter and also is influenced by a risk factor in the network. We extend the traditional comprehensive hub location problem by considering two new objective functions. So, our multi-objective model includes (i) minimization of total current investment costs and (ii) minimization of maximum transportation time between each origin–destination pair in the network. Besides, a novel multi-objective imperialist competitive algorithm (MOICA) is proposed to obtain the Pareto-optimal solutions of the problem. The performance of the proposed solution algorithm is compared with two well-known meta-heuristics, namely, non-dominated sorting genetic algorithm (NSGA-II) and Pareto archive evolution strategy (PAES). Computational results show that MOICA outperforms the other meta-heuristics. 相似文献
15.
Hubs are special facilities that serve as switching, transshipment and sorting points in many-to-many distribution systems. The hub location problem is concerned with locating hub facilities and allocating demand nodes to hubs in order to route the traffic between origin–destination pairs. In this paper we classify and survey network hub location models. We also include some recent trends on hub location and provide a synthesis of the literature. 相似文献
16.
Pisinger et al. introduced the concept of ‘aggressive reduction’ for large-scale combinatorial optimization problems. The idea is to spend much time and effort in reducing the size of the instance, in the hope that the reduced instance will then be small enough to be solved by an exact algorithm. 相似文献
17.
Igor Averbakh Oded Berman Zvi Drezner George O. Wesolowsky 《European Journal of Operational Research》2007
We consider a generalization of the uncapacitated facility location problem, where the setup cost for a facility and the price charged for service may depend on the number of customers patronizing the facility. Customers are represented by the nodes of the transportation network, and facilities can be located only at nodes; a customer selects a facility to patronize so as to minimize his (her) expenses (price for service + the part of transportation costs paid by the customer). We assume that transportation costs are paid partially by the service company and partially by customers. The objective is to choose locations for facilities and balanced prices so as to either minimize the expenses of the service company (the sum of the total setup cost and the total part of transportation costs paid by the company), or to maximize the total profit. A polynomial-time dynamic programming algorithm for the problem on a tree network is developed. 相似文献
18.
We consider a discrete facility location problem where the difference between the maximum and minimum number of customers allocated to every plant has to be balanced. Two different Integer Programming formulations are built, and several families of valid inequalities for these formulations are developed. Preprocessing techniques which allow to reduce the size of the largest formulation, based on the upper bound obtained by means of an ad hoc heuristic solution, are also incorporated. Since the number of available valid inequalities for this formulation is exponential, a branch-and-cut algorithm is designed where the most violated inequalities are separated at every node of the branching tree. Both formulations, with and without the improvements, are tested in a computational framework in order to discriminate the most promising solution methods. Difficult instances with up to 50 potential plants and 100 customers, and largest easy instances, can be solved in one CPU hour. 相似文献
19.
This paper considers the discrete two-hub location problem. We need to choose two hubs from a set of nodes. The remaining nodes are to be connected to one of the two hubs which act as switching points for internodal flows. A configuration which minimizes the total flow cost needs to be found. We show that the problem can be solved in polynomial time when the hub locations are fixed. Since there are at most
ways to choose the hub locations, the two-hub location problem can be solved in polynomial time. We transform the quadratic 0–1 integer program of the single allocation problem in the fixed two-hub system into a linear program and show that all extreme points of the polytope defined by the LP are integral. Also, the problem can be transformed into a minimum cut problem which can be solved efficiently by any polynomial time algorithm. 相似文献
20.
Several algorithms already exist for solving the uncapacitated facility location problem. The most efficient are based upon the solution of the strong linear programming relaxation. The dual of this relaxation has a condensed form which consists of minimizing a certain piecewise linear convex function. This paper presents a new method for solving the uncapacitated facility location problem based upon the exact solution of the condensed dual via orthogonal projections. The amount of work per iteration is of the same order as that of a simplex iteration for a linear program inm variables and constraints, wherem is the number of clients. For comparison, the underlying linear programming dual hasmn + m + n variables andmn +n constraints, wheren is the number of potential locations for the facilities. The method is flexible as it can handle side constraints. In particular, when there is a duality gap, the linear programming formulation can be strengthened by adding cuts. Numerical results for some classical test problems are included. 相似文献