首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we develop a general approach to generate all non-dominated solutions of the multi-objective integer programming (MOIP) Problem. Our approach, which is based on the identification of objective efficiency ranges, is an improvement over classical ε-constraint method. Objective efficiency ranges are identified by solving simpler MOIP problems with fewer objectives. We first provide the classical ε-constraint method on the bi-objective integer programming problem for the sake of completeness and comment on its efficiency. Then present our method on tri-objective integer programming problem and then extend it to the general MOIP problem with k objectives. A numerical example considering tri-objective assignment problem is also provided.  相似文献   

2.
A simple augmented ?-constraint (SAUGMECON) method is put forward to generate all non-dominated solutions of multi-objective integer programming (MOIP) problems. The SAUGMECON method is a variant of the augmented ?-constraint (AUGMECON) method proposed in 2009 and improved in 2013 by Mavrotas et al. However, with the SAUGMECON method, all non-dominated solutions can be found much more efficiently thanks to our innovations to algorithm acceleration. These innovative acceleration mechanisms include: (1) an extension to the acceleration algorithm with early exit and (2) an addition of an acceleration algorithm with bouncing steps. The same numerical example in Lokman and Köksalan (2012) is used to illustrate workings of the method. Then comparisons of computational performance among the method proposed by  and , the method developed by Lokman and Köksalan (2012) and the SAUGMECON method are made by solving randomly generated general MOIP problem instances as well as special MOIP problem instances such as the MOKP and MOSP problem instances presented in Table 4 in Lokman and Köksalan (2012). The experimental results show that the SAUGMECON method performs the best among these methods. More importantly, the advantage of the SAUGMECON method over the method proposed by Lokman and Köksalan (2012) turns out to be increasingly more prominent as the number of objectives increases.  相似文献   

3.
The paper gives a general overview of the Light Beam Search (LBS) methodology and applications. LBS enables an interactive analysis of multiple-objective decision problems due to presentation of samples of a large set of non-dominated points, to the decision maker (DM) in each iteration. A local preference model in the form of an outranking relation is used to define the neighborhood of a current non-dominated point the sample comes from. The first current point is obtained by projection of an aspiration point onto the non-dominated set in the direction of a reservation point. The DM can control the search by either modifying the aspiration and reservation points, or by shifting the current point to a selected better point from its neighborhood. The paper describes applications of the approach to several real life problems and discusses observations made while working on these problems. The LBS approach is compared to other existing methods and the class of problems suitable to this methodology is defined.  相似文献   

4.
This paper considers a new optimal location problem, called defensive location problem (DLP). In the DLPs, a decision maker locates defensive facilities in order to prevent her/his enemies from reaching an important site, called a core; for example, “a government of a country locates self-defense bases in order to prevent her/his aggressors from reaching the capital of the country.” It is assumed that the region where the decision maker locates her/his defensive facilities is represented as a network and the core is a vertex in the network, and that the facility locater and her/his enemy are an upper and a lower level of decision maker, respectively. Then the DLPs are formulated as bilevel 0-1 programming problems to find Stackelberg solutions. In order to solve the DLPs efficiently, a solving algorithm for the DLPs based upon tabu search methods is proposed. The efficiency of the proposed solving methods is shown by applying to examples of the DLPs. Moreover, the DLPs are extended to multi-objective DLPs that the decision maker needs to defend several cores simultaneously. Such DLPs are formulated as multi-objective programming problems. In order to find a satisfying solution of the decision maker for the multi-objective DLP, an interactive fuzzy satisfying method is proposed, and the results of applying the method to examples of the multi-objective DLPs are shown.  相似文献   

5.
This paper presents a new algorithm for identifying all supported non-dominated vectors (or outcomes) in the objective space, as well as the corresponding efficient solutions in the decision space, for multi-objective integer network flow problems. Identifying the set of supported non-dominated vectors is of the utmost importance for obtaining a first approximation of the whole set of non-dominated vectors. This approximation is crucial, for example, in two-phase methods that first compute the supported non-dominated vectors and then the unsupported non-dominated ones. Our approach is based on a negative-cycle algorithm used in single objective minimum cost flow problems, applied to a sequence of parametric problems. The proposed approach uses the connectedness property of the set of supported non-dominated vectors/efficient solutions to find all integer solutions in maximal non-dominated/efficient facets.  相似文献   

6.
《Optimization》2012,61(3):335-358
In this article, we study the bi-level linear programming problem with multiple objective functions on the upper level (with particular focus on the bi-objective case) and a single objective function on the lower level. We have restricted our attention to this type of problem because the consideration of several objectives at the lower level raises additional issues for the bi-level decision process resulting from the difficulty of anticipating a decision from the lower level decision maker. We examine some properties of the problem and propose a methodological approach based on the reformulation of the problem as a multiobjective mixed 0–1 linear programming problem. The basic idea consists in applying a reference point algorithm that has been originally developed as an interactive procedure for multiobjective mixed-integer programming. This approach further enables characterization of the whole Pareto frontier in the bi-objective case. Two illustrative numerical examples are included to show the viability of the proposed methodology.  相似文献   

7.
Synchronous approach in interactive multiobjective optimization   总被引:8,自引:0,他引:8  
We introduce a new approach in the methodology development for interactive multiobjective optimization. The presentation is given in the context of the interactive NIMBUS method, where the solution process is based on the classification of objective functions. The idea is to formulate several scalarizing functions, all using the same preference information of the decision maker. Thus, opposed to fixing one scalarizing function (as is done in most methods), we utilize several scalarizing functions in a synchronous way. This means that we as method developers do not make the choice between different scalarizing functions but calculate the results of different scalarizing functions and leave the final decision to the expert, the decision maker. Simultaneously, (s)he obtains a better view of the solutions corresponding to her/his preferences expressed once during each iteration.In this paper, we describe a synchronous variant of the NIMBUS method. In addition, we introduce a new version of its implementation WWW-NIMBUS operating on the Internet. WWW-NIMBUS is a software system capable of solving even computationally demanding nonlinear problems. The new version of WWW-NIMBUS can handle versatile types of multiobjective optimization problems and includes new desirable features increasing its user-friendliness.  相似文献   

8.
In this paper, we present an interactive algorithm (ISTMO) for stochastic multiobjective problems with continuous random variables. This method combines the concept of probability efficiency for stochastic problems with the reference point philosophy for deterministic multiobjective problems. The decision maker expresses her/his references by dividing the variation range of each objective into intervals, and by setting the desired probability for each objective to achieve values belonging to each interval. These intervals may also be redefined during the process. This interactive procedure helps the decision maker to understand the stochastic nature of the problem, to discover the risk level (s)he is willing to assume for each objective, and to learn about the trade-offs among the objectives.  相似文献   

9.
This paper presents an interactive method for solving general 0-1 multiobjective linear programs using Simulated Annealing and Tabu Search. The interactive protocol with the decision maker is based on the specification of reservation levels for the objective function values. These reservation levels narrow the scope of the search in each interaction in order to identify regions of major interest to the decision maker. Metaheuristic approaches are used to generate potentially nondominated solutions in the computational phases. Generic versions of Simulated Annealing and Tabu Search for 0-1 single objective linear problems were developed which include a general routine for repairing unfeasible solutions. This routine improves significantly the results of single objective problems and, consequently, the quality of the potentially nondominated solutions generated for the multiobjective problems. Computational results and examples are presented.  相似文献   

10.
An interactive method is developed for solving the general nonlinear multiple objective mathematical programming problems. The method asks the decision maker to provide partial information (local tradeoff ratios) about his utility (preference) function at each iteration. Using the information, the method generates an efficient solution and presents it to the decision maker. In so doing, the best compromise solution is sought in a finite number of iterations. This method differs from the existing feasible direction methods in that (i) it allows the decision maker to consider only efficient solutions throughout, (ii) the requirement of line search is optional, and (iii) it solves the problems with linear objective functions and linear utility function in one iteration. Using various problems selected from the literature, five line search variations of the method are tested and compared to one another. The nonexisting decision maker is simulated using three different recognition levels, and their impact on the method is also investigated.  相似文献   

11.
As indicated by the most widely accepted classification, the Multi-Objective Mathematical Programming (MOMP) methods can be classified as a priori, interactive and a posteriori, according to the decision stage in which the decision maker expresses his/her preferences. Although the a priori methods are the most popular, the interactive and the a posteriori methods convey much more information to the decision maker. Especially, the a posteriori (or generation) methods give the whole picture (i.e. the Pareto set) to the decision maker, before his/her final choice, reinforcing thus, his/her confidence to the final decision. However, the generation methods are the less popular due to their computational effort and the lack of widely available software. The present work is an effort to effectively implement the ε-constraint method for producing the Pareto optimal solutions in a MOMP. We propose a novel version of the method (augmented ε-constraint method - AUGMECON) that avoids the production of weakly Pareto optimal solutions and accelerates the whole process by avoiding redundant iterations. The method AUGMECON has been implemented in GAMS, a widely used modelling language, and has already been used in some applications. Finally, an interactive approach that is based on AUGMECON and eventually results in the most preferred Pareto optimal solution is also proposed in the paper.  相似文献   

12.
In this paper, we present a new general formulation for multiobjective optimization that can accommodate several interactive methods of different types (regarding various types of preference information required from the decision maker). This formulation provides a comfortable implementation framework for a general interactive system and allows the decision maker to conveniently apply several interactive methods in one solution process. In other words, the decision maker can at each iteration of the solution process choose how to give preference information to direct the interactive solution process, and the formulation enables changing the type of preferences, that is, the method used, whenever desired. The first general formulation, GLIDE, included eight interactive methods utilizing four types of preferences. Here we present an improved version where we pay special attention to the computational efficiency (especially significant for large and complex problems), by eliminating some constraints and parameters of the original formulation. To be more specific, we propose two new formulations, depending on whether the multiobjective optimization problem to be considered is differentiable or not. Some computational tests are reported showing improvements in all cases. The generality of the new improved formulations is supported by the fact that they can accommodate six interactive methods more, that is, a total of fourteen interactive methods, just by adjusting parameter values.  相似文献   

13.
This study examines new versions of two interactive methods to address multiobjective problems, the aim of which is to enable the decision maker to reach a solution within the range of those considered efficient in a portfolio selection model, in which several objectives are pursued concerning risk and return and given that these are clearly conflicting objectives, the profile of the model proposed is multicriteria. Normally the range of efficient portfolios is fairly extensive thus making the selection of a single one an onerous task. In order to facilitate this process, interactive methods are used aimed at guiding the decision maker towards the optimal solution based on his preferences. Several adaptations were carried out on the original methods in order to facilitate the interactive process, improving the quality of the obtained portfolios, and these were applied to data obtained from the Madrid Stock Market, interaction taking place with two decision makers, one of whom was more aggressive than the other in their selections made.  相似文献   

14.
Most interactive methods developed for solving multiobjective optimization problems sequentially generate Pareto optimal or nondominated vectors and the decision maker must always allow impairment in at least one objective function to get a new solution. The NAUTILUS method proposed is based on the assumptions that past experiences affect decision makers’ hopes and that people do not react symmetrically to gains and losses. Therefore, some decision makers may prefer to start from the worst possible objective values and to improve every objective step by step according to their preferences. In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the previous one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences about desired improvements in objective function values. NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support problems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure. An illustrative example demonstrates how this new method iterates.  相似文献   

15.
In this paper we consider solution methods for multiobjective integer programming (MOIP) problems based on scalarization. We define the MOIP, discuss some common scalarizations, and provide a general formulation that encompasses most scalarizations that have been applied in the MOIP context as special cases. We show that these methods suffer some drawbacks by either only being able to find supported efficient solutions or introducing constraints that can make the computational effort to solve the scalarization prohibitive. We show that Lagrangian duality applied to the general scalarization does not remedy the situation. We also introduce a new scalarization technique, the method of elastic constraints, which is shown to be able to find all efficient solutions and overcome the computational burden of the scalarizations that use constraints on objective values. Finally, we present some results from an application in airline crew scheduling as evidence. This research is partially supported by University of Auckland grant 3602178/9275 and by the Deutsche Forschungsgemeinschaft grant Ka 477/27-1.  相似文献   

16.
In interactive decision making, a choice behavior of the decision maker may differ depending on proximity of a current solution to satisfactory values of objectives. An interactive approach proposed in this paper allows the decision maker to use different search principles depending on his/her perception of the achieved values of objectives and trade-offs. While an analysis of the values of objectives may guide the initial search for a final solution, it can be replaced by trade-off evaluations at some later stages. Such an approach allows the decision maker to change search principles, and to identify a psychologically stable solution to the multiple criteria decision problem.  相似文献   

17.
多目标线性规划的一种交互式单纯形算法   总被引:1,自引:0,他引:1  
本文基于分析有效极点解的有效变量的特点以及在有效点处各个目标函数的数值来得到改进的搜索方向的研究思想,提出了求解目标函数和约束均为线性的多目标线性规划问题的一种交互式算法。该方法可以保证每一步得到的解均为有效极点解,且根据决策者的偏好不断得到改进,直至最终得到满意的最终解。  相似文献   

18.
Two algorithms to solve the nonlinear bicriterion integer mathematical programming (BIMP) problem are presented. One is a noninteractive procedure that generates the entire efficient set, and the second one is an interactive procedure that determines the best compromise solution of the decision maker (DM). A Tchebycheff norm related approach is used for generating the efficient points for the BIMP problem. An application of the interactive procedure for a quality control problem is also presented.This research was supported by the National Science Foundation Grant No. ECS-82-12076 with the University of Oklahoma.  相似文献   

19.
In this paper, we address the dynamic and multi-criteria decision-making problems under uncertainty, generally represented by multi-criteria decision trees. Decision-making consists of choosing, at each period, a decision that maximizes the decision-maker outcomes. These outcomes should often be measured against a set of heterogeneous and conflicting criteria. Generating the set of non-dominated solutions is a common approach considered in the literature to solve the multi-criteria decision trees, but it becomes very challenging for large problems. We propose a new approach to solve multi-criteria decision trees without generating the set of all non-dominated solutions, which should reduce the computation time and the cardinality of the solution set. In particular, the proposed approach combines the advantages of decomposition with the application of multi-criteria decision aid (MCDA) methods at each decision node. A generalization of the Bellman’s principle of decomposition to the multi-criteria context is put forward. A decomposition theorem is therefore proposed. Under the sufficient conditions stated by the theorem, the principle of decomposition will generate the set of best compromise strategies. Seven MCDA methods are then characterized (lexicographic, weighted sum, multi-attribute value theory, TOPSIS, ELECTRE III, and PROMETHEE II) against the conditions of the theorem of decomposition and against other properties (neutrality, anonymous, fidelity, dominance, independency), in order to confirm or infirm their applicability with the proposed decomposition principle. Moreover, the relationship between independency and temporal consistence is discussed as well as the effects of incomparableness, rank reversals, and use of thresholds. Two conjectures resulted from this characterization.  相似文献   

20.
We present a simple multiple criteria decision making solution technique called the GUESS method. This method has been used in MCDM experiments where different solution methods have been compared. The GUESS method is an interactive solution method designed to be used with continuous multiple criteria decision problems. It is based on a class of solution methods called reference point methods whereby the decision maker generates a sequence of solutions based on a sequence of guesses or aspiration vectors. In this paper we explain the basic concepts of the GUESS method and describe the algorithm of the solution method. An illustrative example is provided, along with a discussion of the method from a behavioural decision making perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号