首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the vehicle routing with demand allocation problem where the decision-maker jointly optimizes the location of delivery sites, the assignment of customers to (preferably convenient) delivery sites, and the routing of vehicles operated from a central depot to serve customers at their designated sites. We propose an effective branch-and-price (B&P) algorithm that is demonstrated to greatly outperform the use of commercial branch-and-bound/cut solvers such as CPLEX. Central to the efficacy of the proposed B&P algorithm is the development of a specialized dynamic programming procedure that extends works on elementary shortest path problems with resource constraints in order to solve the more complex column generation pricing subproblem. Our computational study demonstrates the efficacy of the proposed approach using a set of 60 problem instances. Moreover, the proposed methodology has the merit of providing optimal solutions in run times that are significantly shorter than those reported for decomposition-based heuristics in the literature.  相似文献   

2.
Aiming at the development of an exact solution method for registration problems, we present two different Branch & Bound algorithms for a mixed integer programming formulation of the problem. The first B&B algorithm branches on binary assignment variables and makes use of an optimality condition that is derived from a graph matching formulation. The second, geometric B&B algorithm applies a geometric branching strategy on continuous transformation variables. The two approaches are compared for synthetic test examples as well as for 2-dimensional medical data. The results show that medium sized problem instances can be solved to global optimality in a reasonable amount of time.  相似文献   

3.
This paper investigates the computational tractability of aircraft sequencing problems over multiple runways under mixed mode operations, contrasting an enhanced mixed-integer programme (MIP) and an accelerated column generation approach. First, we examine the benefit of augmenting a base MIP with valid inequalities, preprocessing routines, and symmetry-defeating hierarchical constraints in order to improve the performance of branch-and-bound (B&B)/cut techniques as implemented in commercial solvers. Second, we alternatively reformulate the problem as a set partitioning model that prompts the development of a specialized column generation approach. The latter is accelerated by incorporating an interior point dual stabilization scheme and a complementary column generation routine. Empirical results using a set of new, computationally challenging instances and classical instances in the OR Library reveal the potential and limitations of the two methodologies.  相似文献   

4.
The transportation problem with exclusionary side constraints, a practical distribution and logistics problem, is formulated as a 0–1 mixed integer programming model. Two branch-and-bound (B&B) algorithms are developed and implemented in this study to solve this problem. Both algorithms use the Driebeek penalties to strengthen the lower bounds so as to fathom some of the subproblems, to peg variables, and to guide the selection of separation variables. One algorithm also strongly exploits the problem structure in selecting separation variables in order to find feasible solutions sooner. To take advantage of the underlying network structure of the problem, the algorithms employ the primal network simplex method to solve network relaxations of the problem. A computational experiment was conducted to test the performance of the algorithms and to characterize the problem difficulty. The commercial mixed integer programming software CPLEX and an existing special purpose algorithm specifically designed for this problem were used as benchmarks to measure the performance of the algorithms. Computational results show that the new algorithms completely dominate the existing special purpose algorithm and run from two to three orders of magnitude faster than CPLEX.  相似文献   

5.
This paper describes the details of a successful application where an integer programming and evolutionary hybrid algorithm was used to solve a bus driver duty optimization problem. The task is NP-hard, therefore theoretically optimal solutions can only be calculated for very small problem instances. Our aim is to obtain solutions of good quality within reasonable time limits. We first applied an integer programming approach to a set partitioning problem. The model was solved with a column generation algorithm in a branch and bound scheme. In order to solve larger real-life problems, we have combined the integer programming method with a greedy 1+1 steady state evolutionary algorithm. The resulting hybrid algorithm was capable of providing near-optimal solutions within reasonable timescales to larger instances of the bus driver scheduling problem. We present the results and running times of our algorithm in detail, as well as possible directions of future improvements.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(7-8):2118-2129
This paper considers the multi level uncapacitated facility location problem (MLUFLP). A new mixed integer linear programming (MILP) formulation is presented and validity of this formulation is given. Experimental results are performed on instances known from literature. The results achieved by CPLEX and Gurobi solvers, based on the proposed MILP formulation, are compared to the results obtained by the same solvers on the already known formulations. The results show that CPLEX and Gurobi can optimally solve all small and medium sized instances and even some large-scale instances using the new formulation.  相似文献   

7.
This paper presents a new exact algorithm for the Capacitated Vehicle Routing Problem (CVRP) based on the set partitioning formulation with additional cuts that correspond to capacity and clique inequalities. The exact algorithm uses a bounding procedure that finds a near optimal dual solution of the LP-relaxation of the resulting mathematical formulation by combining three dual ascent heuristics. The first dual heuristic is based on the q-route relaxation of the set partitioning formulation of the CVRP. The second one combines Lagrangean relaxation, pricing and cut generation. The third attempts to close the duality gap left by the first two procedures using a classical pricing and cut generation technique. The final dual solution is used to generate a reduced problem containing only the routes whose reduced costs are smaller than the gap between an upper bound and the lower bound achieved. The resulting problem is solved by an integer programming solver. Computational results over the main instances from the literature show the effectiveness of the proposed algorithm.   相似文献   

8.
When a column generation approach is applied to decomposable mixed integer programming problems, it is standard to formulate and solve the master problem as a linear program. Seen in the dual space, this results in the algorithm known in the nonlinear programming community as the cutting-plane algorithm of Kelley and Cheney-Goldstein. However, more stable methods with better theoretical convergence rates are known and have been used as alternatives to this standard. One of them is the bundle method; our aim is to illustrate its differences with Kelley’s method. In the process we review alternative stabilization techniques used in column generation, comparing them from both primal and dual points of view. Numerical comparisons are presented for five applications: cutting stock (which includes bin packing), vertex coloring, capacitated vehicle routing, multi-item lot sizing, and traveling salesman. We also give a sketchy comparison with the volume algorithm. This research has been supported by Inria New Investigation Grant “Convex Optimization and Dantzig-Wolfe Decomposition”.  相似文献   

9.
We study classic machine sequencing problems in an online setting. Specifically, we look at deterministic and randomized algorithms for the problem of scheduling jobs with release dates on identical parallel machines, to minimize the sum of weighted completion times: Both preemptive and non-preemptive versions of the problem are analyzed. Using linear programming techniques, borrowed from the single machine case, we are able to design a 2.62-competitive deterministic algorithm for the non-preemptive version of the problem, improving upon the 3.28-competitive algorithm of Megow and Schulz. Additionally, we show how to combine randomization techniques with the linear programming approach to obtain randomized algorithms for both versions of the problem with competitive ratio strictly smaller than 2 for any number of machines (but approaching two as the number of machines grows). Our algorithms naturally extend several approaches for single and parallel machine scheduling. We also present a brief computational study, for randomly generated problem instances, which suggests that our algorithms perform very well in practice. A preliminary version of this work appears in the Proceedings of the 11th conference on integer programming and combinatorial optimization (IPCO), Berlin, 8–10 June 2005.  相似文献   

10.
This paper considers the maximum betweenness problem. A new mixed integer linear programming (MILP) formulation is presented and validity of this formulation is given. Experimental results are performed on randomly generated instances from the literature. The results of CPLEX solver, based on the proposed MILP formulation, are compared with results obtained by total enumeration technique. The results show that CPLEX optimally solves instances of up to 30 elements and 60 triples in a short period of time.  相似文献   

11.
12.
Most of the research on integrated inventory and routing problems ignores the case when products are perishable. However, considering the integrated problem with perishable goods is crucial since any discrepancy between the routing and inventory cost can double down the risk of higher obsolescence costs due to the limited shelf-life of the products. In this paper, we consider a distribution problem involving a depot, a set of customers and a homogeneous fleet of capacitated vehicles. Perishable goods are transported from the depot to customers in such a way that out-of-stock situations never occur. The objective is to simultaneously determine the inventory and routing decisions over a given time horizon such that total transportation cost is minimized. We present a new “arc-based formulation” for the problem which is deemed more suitable for our new tabu search based approach for solving the problem. We perform a thorough sensitivity analysis for each of the tabu search parameters individually and use the obtained gaps to fine-tune the parameter values that are used in solving larger sized instances of the problem. We solve different sizes of randomly generated instances and compare the results obtained using the tabu search algorithm to those obtained by solving the problem using CPLEX and a recently published column generation algorithm. Our computational experiments demonstrate that the tabu search algorithm is capable of obtaining a near-optimal solution in less computational time than the time required to solve the problem to optimality using CPLEX, and outperforms the column generation algorithm for solving the “path flow formulation” of the problem in terms of solution quality in almost all of the considered instances.  相似文献   

13.
In this paper we study the problem of minimizing weighted earliness and tardiness on a single machine when all the jobs share the same due date. We propose two quadratic integer programming models for solving both cases of unrestricted and restricted due dates, an auxiliary model based on unconstrained quadratic integer programming and an algorithmic scheme for solving each instance, according to its size and characteristics, in the most efficient way. The scheme is tested on a set of well-known test problems. By combining the solutions of the three models we prove the optimality of the solutions obtained for most of the problems. For large instances, although optimality cannot be proved, we actually obtain optimal solutions for all the tested instances.  相似文献   

14.
15.
We investigate a logistics facility location problem to determine whether the existing facilities remain open or not, what the expansion size of the open facilities should be and which potential facilities should be selected. The problem is formulated as a mixed integer linear programming model (MILP) with the objective to minimize the sum of the savings from closing the existing facilities, the expansion costs, the fixed setup costs, the facility operating costs and the transportation costs. The structure of the model motivates us to solve the problem using Benders decomposition algorithm. Three groups of valid inequalities are derived to improve the lower bounds obtained by the Benders master problem. By separating the primal Benders subproblem, different types of disaggregated cuts of the primal Benders cut are constructed in each iteration. A high density Pareto cut generation method is proposed to accelerate the convergence by lifting Pareto-optimal cuts. Computational experiments show that the combination of all the valid inequalities can improve the lower bounds significantly. By alternately applying the high density Pareto cut generation method based on the best disaggregated cuts, the improved Benders decomposition algorithm is advantageous in decreasing the total number of iterations and CPU time when compared to the standard Benders algorithm and optimization solver CPLEX, especially for large-scale instances.  相似文献   

16.
This paper explores the potential benefit of using tuned parameter settings for integer programming instances. Three metrics are considered for selecting parameters: Time-to-Optimality, Proven-Gap and Best-Integer-Solution. Good parameter settings for each metric are found using the open-source software tool Selection Tool for Optimization Parameters. Computational tests are presented using CPLEX solver (version 9.0) on MIPLIB test instances, showing substantial improvements over the default parameter setting. Although the benefit of a tuned parameter setting on an individual instance is outweighed by the cost of identifying the tuned setting, these results indicate that substantial benefit may be achieved in cases where the cost of tuning parameter settings is justified.  相似文献   

17.
In the context of branch-and-bound (B&B) for integer programming (IP) problems, a direction along which the polyhedron of the IP has minimum width is termed a thin direction. We demonstrate that a thin direction need not always be a good direction to branch on for solving the problem efficiently. Further, the integer width, which is the number of B&B nodes created when branching on the direction, may also not be an accurate indicator of good branching directions.  相似文献   

18.
In this paper, we describe a generalization of the multidimensional two-way number partitioning problem (MDTWNPP) where a set of vectors has to be partitioned into p sets (parts) such that the sums per every coordinate should be exactly or approximately equal. We will call this generalization the multidimensional multi-way number partitioning problem (MDMWNPP). Also, an efficient memetic algorithm (MA) heuristic is developed to solve the multidimensional multi-way number partitioning problem obtained by combining a genetic algorithm (GA) with a powerful local search (LS) procedure. The performances of our memetic algorithm have been compared with the existing numerical results obtained by CPLEX based on an integer linear programming formulation of the problem. The solution reveals that our proposed methodology performs very well in terms of both quality of the solutions obtained and the computational time compared with the previous method of solving the multidimensional two-way number partitioning problem.  相似文献   

19.
This paper studies a two-machine open shop scheduling problem with an availability constraint, ie we assume that a machine is not always available and that the processing of the interrupted job can be resumed when the machine becomes available again. We consider the makespan minimization as criterion. This problem is NP-hard. We develop a pseudo-polynomial time dynamic programming algorithm to solve the problem optimally when the machine is not available at time s>0. Then, we propose a mixed integer linear programming formulation, that allows to solve instances with up to 500 jobs optimally in less than 5?min with CPLEX solver. Finally, we show that any heuristic algorithm has a worst-case error bound of 1.  相似文献   

20.
Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem   总被引:6,自引:0,他引:6  
We compare two branch-and-price approaches for the cutting stock problem. Each algorithm is based on a different integer programming formulation of the column generation master problem. One formulation results in a master problem with 0–1 integer variables while the other has general integer variables. Both algorithms employ column generation for solving LP relaxations at each node of a branch-and-bound tree to obtain optimal integer solutions. These different formulations yield the same column generation subproblem, but require different branch-and-bound approaches. Computational results for both real and randomly generated test problems are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号