首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports heuristic and exact solution advances for the Quadratic Assignment Problem (QAP).QAPinstances most often discussed in the literature are relatively well solved by heuristic approaches. Indeed, solutions at a fraction of one percent from the best known solution values are rapidly found by most heuristic methods. Exact methods are not able to prove optimality for these instances as soon as the problem size approaches 30 to 40. This article presents new QAP instances that are ill conditioned for many metaheuristic-based methods. However, these new instances are shown to be solved relatively well by some exact methods, since problem instances up to a size of 75 have been exactly solved.  相似文献   

2.
The satisfiability problem in forms such as maximum satisfiability (MAX-SAT) remains a hard problem. The most successful approaches for solving such problems use a form of systematic tree search. This paper describes the use of a hybrid algorithm, combining genetic algorithms and integer programming branch and bound approaches, to solve MAX-SAT problems. Such problems are formulated as integer programs and solved by a hybrid algorithm implemented within standard mathematical programming software. Computational testing of the algorithm, which mixes heuristic and exact approaches, is described.  相似文献   

3.
The quadratic assignment problem (QAP) is a well-known combinatorial optimization problem of which the travelling-salesman problem is a special case. Although the QAP has been extensively studied during the past three decades, this problem remains very hard to solve. Problems of sizes greater than 15 are generally impractical to solve. For this reason, many heuristics have been developed. However, in the literature, there is a lack of test problems with known optimal solutions for evaluating heuristic algorithms. Only recently Paulubetskis proposed a method to generate test problems with known optimal solutions for a special type of QAP. This paper concerns the generation of test problems for the QAP with known optimal permutations. We generalize the result of Palubetskis and provide test-problem generators for more general types of QAPs. The test-problem generators proposed are easy to implement and were also tested on several well-known heuristic algorithms for the QAP. Computatinal results indicate that the test problems generated can be used to test the effectiveness of heuristic algorithms for the QAP. Comparison with Palubetskis' procedure was made, showing the superiority of the new test-problem generators. Three illustrative test problems of different types are also provided in an appendix, together with the optimal permutations and the optimal objective function values.  相似文献   

4.
In this paper we consider the rectilinear version of the quadratic assignment problem (QAP). We define a class of edge-weighted graphs with nonnegatively valued bisections. For one important type of such graphs we provide a characterization of point sets on the plane for which the optimal value of the related QAP is zero. These graphs are used in the algorithms for generating rectilinear QAP instances with known provably optimal solutions. The basic algorithm of such type uses only triangles. Making a reduction from 3-dimensional matching, it is shown that the set of instances which can be generated by this algorithm is hard. The basic algorithm is extended to process graphs larger than triangles. We give implementation details of this extension and of four other variations of the basic algorithm. We compare these five and also two existing generators experimentally employing multi-start descent heuristic for the QAP as an examiner. The graphs with nonnegatively valued bisections can also be used in the construction of lower bounds on the optimal value for the rectilinear QAP.  相似文献   

5.
The quadratic assignment problem (QAP) is a challenging combinatorial problem. The problem is NP-hard and in addition, it is considered practically intractable to solve large QAP instances, to proven optimality, within reasonable time limits. In this paper we present an attractive mixed integer linear programming (MILP) formulation of the QAP. We first introduce a useful non-linear formulation of the problem and then a method of how to reformulate it to a new exact, compact discrete linear model. This reformulation is efficient for QAP instances with few unique elements in the flow or distance matrices. Finally, we present optimal results, obtained with the discrete linear reformulation, for some previously unsolved instances (with the size n = 32 and 64), from the quadratic assignment problem library, QAPLIB.  相似文献   

6.
COSEARCH: A Parallel Cooperative Metaheuristic   总被引:1,自引:0,他引:1  
In order to design a well-balanced metaheuristic for robustness, we propose the COSEARCH approach which manages the cooperation of complementary heuristic methods via an adaptive memory which contains a history of the search already done. In this paper, we present the idiosyncrasies of the COSEARCH approach and its application for solving large scale instances of the quadratic assignment problem (QAP). We propose an original design of the adaptive memory in order to focus on high quality regions of the search and avoid attractive but deceptive areas. For the QAP, we have hybridized three heuristic agents of complementary behaviours: a Tabu Search is used as the main search algorithm, a Genetic Algorithm is in charge of the diversification and a Kick Operator is applied to intensify the search. The evaluations have been executed on large scale network of workstations via a parallel environment which supports fault tolerance and adaptive dynamic scheduling of tasks.  相似文献   

7.
The turbine balancing problem (TBP) is an NP-Hard combinatorial optimization problem arising in the manufacturing and maintenance of turbine engines. Exact solution methods for solving the TBP are not appropriate since the problem has to be solved in real time and the input data is itself inaccurate. In this paper the TBP is formulated as a quadratic assignment problem (QAP) and we propose a heuristic algorithm for solving the resulting problem. Computational results on a set of instances provided by Pratt & Whitney (P&W) and from the literature, indicate that the proposed algorithm outperforms the current methods used for solving the TBP, and has the best overall performance with respect to other heuristic algorithms in the literature.  相似文献   

8.
The hazardous material routing problem from an origin to a destination in an urban area is addressed. We maximise the distance between the route and its closest vulnerable centre, weighted by the centre’s population. A vulnerable centre is a school, hospital, senior citizens’ residence or the like, concentrating a high population or one that is particularly vulnerable or difficult to evacuate in a short time. The potential consequences on the most exposed centre are thus minimized. Though previously studied in a continuous space, the problem is formulated here over a transport (road) network. We present an exact model for the problem, in which we manage to significantly reduce the required variables, as well as an optimal polynomial time heuristic. The integer programming formulation and the heuristic are tested in a real-world case study set in the transport network in the city of Santiago, Chile.  相似文献   

9.
In many industries, production–distribution networks have become more complex due to globalization. In particular, increasing interdependencies among structural decisions call for the development of integrated models. In this paper, we present a mathematical model for simultaneous optimization of the plant location, capacity acquisition and technology selection decisions in a multi-commodity environment. The proposed model represents the possible scale and scope economies associated with manufacturing technology alternatives. The problem is formulated as a mixed integer nonlinear program with concave costs. We developed an exact and three heuristic solution procedures. Using these procedures, we are able to solve fairly large facility design problems with reasonable computational effort.  相似文献   

10.
In this article we provide an exact expression for computing the autocorrelation coefficient ξ and the autocorrelation length ? of any arbitrary instance of the Quadratic Assignment Problem (QAP) in polynomial time using its elementary landscape decomposition. We also provide empirical evidence of the autocorrelation length conjecture in QAP and compute the parameters ξ and ? for the 137 instances of the QAPLIB. Our goal is to better characterize the difficulty of this important class of problems to ease the future definition of new optimization methods. Also, the advance that this represents helps to consolidate QAP as an interesting and now better understood problem.  相似文献   

11.
Owing to its theoretical as well as practical significance, the facility layout problem with unequal-area departments has been studied for several decades, with a wide range of heuristic and a few exact solution procedures developed by numerous researchers. In one of the exact procedures, the facility layout problem is formulated as a mixed-integer programming (MIP) model in which binary (0/1) variables are used to prevent departments from overlapping with one another. Obtaining an optimal solution to the MIP model is difficult, and currently only problems with a limited number of departments can be solved to optimality. Motivated by this situation, we developed a heuristic procedure which uses a “graph pair” to determine and manipulate the relative location of the departments in the layout. The graph-pair representation technique essentially eliminates the binary variables in the MIP model, which allows the heuristic to solve a large number of linear programming models to construct and improve the layout in a comparatively short period of time. The search procedure to improve the layout is driven by a simulated annealing algorithm. The effectiveness of the proposed graph-pair heuristic is demonstrated by comparing the results with those reported in recent papers. Possible extensions to the graph-pair representation technique are discussed at the end of the paper.  相似文献   

12.
The biquadratic assignment problem (BiQAP) is a generalization of the quadratic assignment problem (QAP). It is a nonlinear integer programming problem where the objective function is a fourth degree multivariable polynomial and the feasible domain is the assignment polytope. BiQAP problems appear in VLSI synthesis. Due to the difficulty of this problem, only heuristic solution approaches have been proposed. In this paper, we propose a new heuristic for the BiQAP, a greedy randomized adaptive search procedure (GRASP). Computational results on instances described in the literature indicate that this procedure consistently finds better solutions than previously described algorithms.  相似文献   

13.
In identifying the general algorithmic problems most frequently encountered in designing and analyzing parallel algorithms (compatibility with machine architecture, choice of suitable shared or distributed data structures, compromise between communication and processing, and load balancing), we present recent research which has been carried out into parallelization of exact search methods such as Branch and Bound. We cover the main problems encountered with such a parallelization and present some theoretical and practical achievements in this field. The parallelization of heuristic search methods is shown to raise the same kind of issues.  相似文献   

14.
The shifting bottleneck (SB) heuristic is among the most successful approximation methods for solving the job shop problem. It is essentially a machine based decomposition procedure where a series of one machine sequencing problems (OMSPs) are solved. However, such a procedure has been reported to be highly ineffective for the flow shop problems. In particular, we show that for the 2-machine flow shop problem, the SB heuristic will deliver the optimal solution in only a small number of instances. We examine the reason behind the failure of the machine based decomposition method for the flow shop. An optimal machine based decomposition procedure is formulated for the 2-machine flow shop, the time complexity of which is worse than that of the celebrated Johnson’s rule. The contribution of the present study lies in showing that the same machine based decomposition procedures which are so successful in solving complex job shops can also be suitably modified to optimally solve the simpler flow shops.  相似文献   

15.
A Tabu Search Algorithm for the Quadratic Assignment Problem   总被引:1,自引:0,他引:1  
Tabu search approach based algorithms are among the widest applied to various combinatorial optimization problems. In this paper, we propose a new version of the tabu search algorithm for the well-known problem, the quadratic assignment problem (QAP). One of the most important features of our tabu search implementation is an efficient use of mutations applied to the best solutions found so far. We tested this approach on a number of instances from the library of the QAP instances—QAPLIB. The results obtained from the experiments show that the proposed algorithm belongs to the most efficient heuristics for the QAP. The high efficiency of this algorithm is also demonstrated by the fact that the new best known solutions were found for several QAP instances.  相似文献   

16.
A relevant financial planning problem is the periodical rebalance of a portfolio of assets such that the portfolio’s total value exhibits certain characteristics. This problem can be modelled using a transition graph G to represent the future state space evolution of the corresponding economy and mathematically formulated as a linear programming problem. We present two different mathematical formulations of the problem. The first considers explicitly the set of the possible scenarios (scenario-based approach), while the second considers implicitly the whole set of scenarios provided by the graph G (graph-based approach). Unfortunately, for both the formulations the size of the corresponding linear programs can be huge even for simple financial problems. However, the graph-based approach seems to be a more powerful model, since it allows to consider a huge number of scenarios in a very compact formulation. The purpose of this paper is to present both heuristic and exact methods for the solution of large-scale multi-period financial planning problems using the graph-based model. In particular, in this paper we propose lower and upper bounds and three exact methods based on column, row and column/row generation, respectively. Since the methods based on column/row generation exploits simultaneously both the primal and the dual structure of the problem we call it Criss-Cross generation method. Computational results are given to prove the effectiveness of the proposed methods.   相似文献   

17.
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques. The work was supported by the German Research Foundation (DFG) under grant No 421/2-1.  相似文献   

18.
为了求解物流设施二次分配问题,提出了一种混合分布估计算法(HEDA)。首先,根据QAP的距离和物流量矩阵信息,提出了一种基于假设物流中心启发式规则的种群初始化方法,用于提高初始种群的质量和算法的搜索效率;其次,针对HEDA的概率模型,提出了一种概率矩阵初始构型生成机制和扰动操作,用于提高算法的全局探索能力;最后,在分析QAP的结构性质的基础上,设计了一种基于快速评价的局部搜索策略,用于提高算法的局部开发能力。仿真计算实验和算法比较验证了HEDA的优化性能。  相似文献   

19.
The quadratic assignment problem (QAP) belongs to the hard core of NP-hard optimization problems. After almost forty years of research only relatively small instances can be solved to optimality. The reason is that the quality of the lower bounds available for exact methods is not sufficient. Recently, lower bounds based on decomposition were proposed for the so called rectilinear QAP that proved to be the strongest for a large class of problem instances. We investigate the strength of these bounds when applied not only at the root node of a search tree but as the bound function used in a Branch-and-Bound code solving large scale QAPs.  相似文献   

20.
In this paper we explore the influence of adaptive memory in the performance of heuristic methods when solving a hard combinatorial optimization problem. Specifically, we tackle the adaptation of tabu search and scatter search to the bandwidth minimization problem. It consists of finding a permutation of the rows and columns of a given matrix which keeps the non-zero elements in a band that is as close as possible to the main diagonal. This is a classic problem, introduced in the late sixties, that also has a well-known formulation in terms of graphs. Different exact and heuristic approaches have been proposed for the bandwidth problem. Our contribution consists of two new algorithms, one based on the tabu search methodology and the other based on the scatter search framework. We also present a hybrid method combining both for improved outcomes. Extensive computational testing shows the influence of the different elements in heuristic search, such as neighborhood definition, local search, combination methods and the use of memory. We compare our proposals with the most recent and advanced methods for this problem, concluding that our new methods can compete with them in speed and running time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号