首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

2.
We present a spectral algorithm based on the convex combination of two modified spectral coefficients for solving systems of nonlinear equations. The proposed algorithm does not require the exact or approximated directional derivative for its implementation. By employing a derivative-free line search, the global convergence of the sequence generated by the algorithm is supported. Numerical experiments are given to demonstrate the performance of the algorithm compared with a similar algorithm in the literature for solving nonlinear equations problems.  相似文献   

3.
As a synchronization parallel framework, the parallel variable transformation (PVT) algorithm is effective to solve unconstrained optimization problems. In this paper, based on the idea that a constrained optimization problem is equivalent to a differentiable unconstrained optimization problem by introducing the Fischer Function, we propose an asynchronous PVT algorithm for solving large-scale linearly constrained convex minimization problems. This new algorithm can terminate when some processor satisfies terminal condition without waiting for other processors. Meanwhile, it can enhances practical efficiency for large-scale optimization problem. Global convergence of the new algorithm is established under suitable assumptions. And in particular, the linear rate of convergence does not depend on the number of processors.  相似文献   

4.
A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a StQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problem in an associated graph. Such a clique problem, which does not seem to have been studied before, is then solved with an exact and a heuristic algorithm. Some computational experience shows that our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature.  相似文献   

5.
6.
In this paper, the Iri-Imai algorithm for solving linear and convex quadratic programming is extended to solve some other smooth convex programming problems. The globally linear convergence rate of this extended algorithm is proved, under the condition that the objective and constraint functions satisfy a certain type of convexity, called the harmonic convexity in this paper. A characterization of this convexity condition is given. The same convexity condition was used by Mehrotra and Sun to prove the convergence of a path-following algorithm.The Iri-Imai algorithm is a natural generalization of the original Newton algorithm to constrained convex programming. Other known convergent interior-point algorithms for smooth convex programming are mainly based on the path-following approach.  相似文献   

7.
A strong duality which states that the optimal values of the primal convex problem and its Lagrangian dual problem are equal (i.e. zero duality gap) and the dual problem attains its maximum is a corner stone in convex optimization. In particular it plays a major role in the numerical solution as well as the application of convex semidefinite optimization. The strong duality requires a technical condition known as a constraint qualification (CQ). Several CQs which are sufficient for strong duality have been given in the literature. In this note we present new necessary and sufficient CQs for the strong duality in convex semidefinite optimization. These CQs are shown to be sharper forms of the strong conical hull intersection property (CHIP) of the intersecting sets of constraints which has played a critical role in other areas of convex optimization such as constrained approximation and error bounds. Research was partially supported by the Australian Research Council. The author is grateful to the referees for their helpful comments  相似文献   

8.
In this paper, a unified algorithm is proposed for solving a class of convex separable nonlinear knapsack problems, which are characterized by positive marginal cost (PMC) and increasing marginal loss–cost ratio (IMLCR). By taking advantage of these two characteristics, the proposed algorithm is applicable to the problem with equality or inequality constraints. In contrast to the methods based on Karush–Kuhn–Tucker (KKT) conditions, our approach has linear computation complexity. Numerical results are reported to demonstrate the efficacy of the proposed algorithm for different problems.  相似文献   

9.
1. Introductioncrust region methods are iterative. As a strategy of globalization, the trust region approach was introduced into solving unconstrained optimization and proved to be efficient androbust. An excellent survey was given by Mor6(1983). The associated research with trustregion methods for unconstrained optimization can be found in Fletcher(1980), Powell(1975),Sorensen(1981), Shultz, Schnabel and Byrd(1985), Yuan(1985). The solution of the trust region subproblem is still an activ…  相似文献   

10.
We study proximal level methods for convex optimization that use projections onto successive approximations of level sets of the objective corresponding to estimates of the optimal value. We show that they enjoy almost optimal efficiency estimates. We give extensions for solving convex constrained problems, convex-concave saddle-point problems and variational inequalities with monotone operators. We present several variants, establish their efficiency estimates, and discuss possible implementations. In particular, our methods require bounded storage in contrast to the original level methods of Lemaréchal, Nemirovskii and Nesterov.This research was supported by the Polish Academy of Sciences.Supported by a grant from the French Ministry of Research and Technology.  相似文献   

11.
Consider a problem of minimizing a separable, strictly convex, monotone and differentiable function on a convex polyhedron generated by a system of m linear inequalities. The problem has a series–parallel structure, with the variables divided serially into n disjoint subsets, whose elements are considered in parallel. This special structure is exploited in two algorithms proposed here for the approximate solution of the problem. The first algorithm solves at most min{mν − n + 1} subproblems; each subproblem has exactly one equality constraint and at most n variables. The second algorithm solves a dynamically generated sequence of subproblems; each subproblem has at most ν − n + 1 equality constraints, where ν is the total number of variables. To solve these subproblems both algorithms use the authors’ Projected Newton Bracketing method for linearly constrained convex minimization, in conjunction with the steepest descent method. We report the results of numerical experiments for both algorithms.  相似文献   

12.
A New Self-Dual Embedding Method for Convex Programming   总被引:5,自引:0,他引:5  
In this paper we introduce a conic optimization formulation to solve constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for a standard primal-dual path following approach for solving the embedded problem. Moreover, there are two immediate logarithmic barrier functions for the primal and dual cones. We show that these two logarithmic barrier functions are conjugate to each other. The explicit form of the conjugate functions are in fact not required to be known in the algorithm. An advantage of the new approach is that there is no need to assume an initial feasible solution to start with. To guarantee the polynomiality of the path-following procedure, we may apply the self-concordant barrier theory of Nesterov and Nemirovski. For this purpose, as one application, we prove that the barrier functions constructed this way are indeed self-concordant when the original constraint functions are convex and quadratic. We pose as an open question to find general conditions under which the constructed barrier functions are self-concordant.  相似文献   

13.
Finding all solutions of nonlinearly constrained systems of equations   总被引:8,自引:0,他引:8  
A new approach is proposed for finding all-feasible solutions for certain classes of nonlinearly constrained systems of equations. By introducing slack variables, the initial problem is transformed into a global optimization problem (P) whose multiple global minimum solutions with a zero objective value (if any) correspond to all solutions of the initial constrained system of equalities. All-globally optimal points of (P) are then localized within a set of arbitrarily small disjoint rectangles. This is based on a branch and bound type global optimization algorithm which attains finite-convergence to each of the multiple global minima of (P) through the successive refinement of a convex relaxation of the feasible region and the subsequent solution of a series of nonlinear convex optimization problems. Based on the form of the participating functions, a number of techniques for constructing this convex relaxation are proposed. By taking advantage of the properties of products of univariate functions, customized convex lower bounding functions are introduced for a large number of expressions that are or can be transformed into products of univariate functions. Alternative convex relaxation procedures involve either the difference of two convex functions employed in BB [23] or the exponential variable transformation based underestimators employed for generalized geometric programming problems [24]. The proposed approach is illustrated with several test problems. For some of these problems additional solutions are identified that existing methods failed to locate.  相似文献   

14.
We propose and study the use of convex constrained optimization techniques for solving large-scale Generalized Sylvester Equations (GSE). For that, we adapt recently developed globalized variants of the projected gradient method to a convex constrained least-squares approach for solving GSE. We demonstrate the effectiveness of our approach on two different applications. First, we apply it to solve the GSE that appears after applying left and right preconditioning schemes to the linear problems associated with the discretization of some partial differential equations. Second, we apply the new approach, combined with a Tikhonov regularization term, to restore some blurred and highly noisy images.  相似文献   

15.
Quadratic knapsack problem has a central role in integer and nonlinear optimization, which has been intensively studied due to its immediate applications in many fields and theoretical reasons. Although quadratic knapsack problem can be solved using traditional nonlinear optimization methods, specialized algorithms are much faster and more reliable than the nonlinear programming solvers. In this paper, we study a mixed linear and quadratic knapsack with a convex separable objective function subject to a single linear constraint and box constraints. We investigate the structural properties of the studied problem, and develop a simple method for solving the continuous version of the problem based on bi-section search, and then we present heuristics for solving the integer version of the problem. Numerical experiments are conducted to show the effectiveness of the proposed solution methods by comparing our methods with some state of the art linear and quadratic convex solvers.  相似文献   

16.
基于一个含有控制参数的修正Lagrangian函数,该文建立了一个求解非线性约束优化问题的修正Lagrangian算法.在一些适当的条件下,证明了控制参数存在一个阀值,当控制参数小于这一阀值时,由这一算法产生的序列解局部收敛于问题的Kuhn-Tucker点,并且建立了解的误差上界.最后给出一些约束优化问题的数值结果.  相似文献   

17.
We suggest a new heuristic for solving unconstrained continuous optimization problems. It is based on a generalized version of the variable neighborhood search metaheuristic. Different neighborhoods and distributions, induced from different metrics are ranked and used to get random points in the shaking step. We also propose VNS for solving constrained optimization problems. The constraints are handled using exterior point penalty functions within an algorithm that combines sequential and exact penalty transformations. The extensive computer analysis that includes the comparison with genetic algorithm and some other approaches on standard test functions are given. With our approach we obtain encouraging results.  相似文献   

18.
We consider a class of convex programming problems whose objective function is given as a linear function plus a convex function whose arguments are linear functions of the decision variables and whose feasible region is a polytope. We show that there exists an optimal solution to this class of problems on a face of the constraint polytope of dimension not more than the number of arguments of the convex function. Based on this result, we develop a method to solve this problem that is inspired by the simplex method for linear programming. It is shown that this method terminates in a finite number of iterations in the special case that the convex function has only a single argument. We then use this insight to develop a second algorithm that solves the problem in a finite number of iterations for an arbitrary number of arguments in the convex function. A computational study illustrates the efficiency of the algorithm and suggests that the average-case performance of these algorithms is a polynomial of low order in the number of decision variables. The work of T. C. Sharkey was supported by a National Science Foundation Graduate Research Fellowship. The work of H. E. Romeijn was supported by the National Science Foundation under Grant No. DMI-0355533.  相似文献   

19.
Portfolio optimization with linear and fixed transaction costs   总被引:1,自引:0,他引:1  
We consider the problem of portfolio selection, with transaction costs and constraints on exposure to risk. Linear transaction costs, bounds on the variance of the return, and bounds on different shortfall probabilities are efficiently handled by convex optimization methods. For such problems, the globally optimal portfolio can be computed very rapidly. Portfolio optimization problems with transaction costs that include a fixed fee, or discount breakpoints, cannot be directly solved by convex optimization. We describe a relaxation method which yields an easily computable upper bound via convex optimization. We also describe a heuristic method for finding a suboptimal portfolio, which is based on solving a small number of convex optimization problems (and hence can be done efficiently). Thus, we produce a suboptimal solution, and also an upper bound on the optimal solution. Numerical experiments suggest that for practical problems the gap between the two is small, even for large problems involving hundreds of assets. The same approach can be used for related problems, such as that of tracking an index with a portfolio consisting of a small number of assets.  相似文献   

20.
The Lagrangian function in the conventional theory for solving constrained optimization problems is a linear combination of the cost and constraint functions. Typically, the optimality conditions based on linear Lagrangian theory are either necessary or sufficient, but not both unless the underlying cost and constraint functions are also convex.We propose a somewhat different approach for solving a nonconvex inequality constrained optimization problem based on a nonlinear Lagrangian function. This leads to optimality conditions which are both sufficient and necessary, without any convexity assumption. Subsequently, under appropriate assumptions, the optimality conditions derived from the new nonlinear Lagrangian approach are used to obtain an equivalent root-finding problem. By appropriately defining a dual optimization problem and an alternative dual problem, we show that zero duality gap will hold always regardless of convexity, contrary to the case of linear Lagrangian duality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号