首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inexact trust region method for large sparse systems of nonlinear equations   总被引:4,自引:0,他引:4  
The main purpose of this paper is to prove the global convergence of the new trust region method based on the smoothed CGS algorithm. This method is surprisingly convenient for the numerical solution of large sparse systems of nonlinear equations, as is demonstrated by numerical experiments. A modification of the proposed trust region method does not use matrices, so it can be used for large dense systems of nonlinear equations.  相似文献   

2.
In this paper, a new weak condition for the convergence of secant method to solve the systems of nonlinear equations is proposed. A convergence ball with the center x0 is replaced by that with xl, the first approximation generated by the secant method with the initial data x-1 and x0. Under the bounded conditions of the divided difference, a convergence theorem is obtained and two examples to illustrate the weakness of convergence conditions are provided. Moreover, the secant method is applied to a system of nonlinear equations to demonstrate the viability and effectiveness of the results in the paper.  相似文献   

3.
A derivative-free residual method for solving nonlinear operator equations in real Hilbert spaces is discussed. This method uses in a systematic way the residual as search direction, but it does not use first order information. Furthermore a convergence analysis and numerical results of the new method applied to nonlinear integral equations using symbolic computation are presented.  相似文献   

4.
A new eighth-order iterative method for solving nonlinear equations   总被引:1,自引:0,他引:1  
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method.  相似文献   

5.
A new globalization procedure for solving a nonlinear system of equationsF(x)=0 is proposed based on the idea of combining Newton step and the steepest descent step WITHIN each iteration. Starting with an arbitrary initial point, the procedure converges either to a solution of the system or to a local minimizer off(x)=1/2F(x) T F(x). Each iteration is chosen to be as close to a Newton step as possible and could be the Newton step itself. Asymptotically the Newton step will be taken in each iteration and thus the convergence is quadratic. Numerical experiments yield positive results. Further generalizations of this procedure are also discussed in this paper.  相似文献   

6.
Tensor methods for large sparse systems of nonlinear equations   总被引:1,自引:0,他引:1  
This paper introduces tensor methods for solving large sparse systems of nonlinear equations. Tensor methods for nonlinear equations were developed in the context of solving small to medium-sized dense problems. They base each iteration on a quadratic model of the nonlinear equations, where the second-order term is selected so that the model requires no more derivative or function information per iteration than standard linear model-based methods, and hardly more storage or arithmetic operations per iteration. Computational experiments on small to medium-sized problems have shown tensor methods to be considerably more efficient than standard Newton-based methods, with a particularly large advantage on singular problems. This paper considers the extension of this approach to solve large sparse problems. The key issue considered is how to make efficient use of sparsity in forming and solving the tensor model problem at each iteration. Accomplishing this turns out to require an entirely new way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor method for solving large sparse systems of nonlinear equations. Test results indicate that this tensor method is significantly more efficient and robust than an efficient sparse Newton-based method, in terms of iterations, function evaluations, and execution time. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Work supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Computational and Technology Research, US Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D, and by the National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.Research supported by AFOSR Grants No. AFOSR-90-0109 and F49620-94-1-0101, ARO Grants No. DAAL03-91-G-0151 and DAAH04-94-G-0228, and NSF Grant No. CCR-9101795.  相似文献   

7.
Modification of Newton’s method with higher-order convergence is presented. The modification of Newton’s method is based on King’s fourth-order method. The new method requires three-step per iteration. Analysis of convergence demonstrates that the order of convergence is 16. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newton’s method and other methods.  相似文献   

8.
In this paper, someQ-order convergence theorems are given for the problem of solving nonlinear systems of equations when using very general finitely terminating methods for the solution of the associated linear systems. The theorems differ from those of Dembo, Eisenstat, and Steihaug in the different stopping condition and in their applicability to the nonlinear ABS algorithm.Lecture presented at the University of Bergamo, Bergamo, Italy, October 1989.  相似文献   

9.
In this paper, we present a new fourth-order method for finding multiple roots of nonlinear equations. It requires one evaluation of the function and two of its first derivative per iteration. Finally, some numerical examples are given to show the performance of the presented method compared with some known third-order methods.  相似文献   

10.
11.
12.
The existance of nontrivial (x=0( periodic solutions of a general class of periodic nonlinear difference equations is proved using bifurcation theory methods. Specifically, the existance of a global continuum of nontrivial periodicsolutions that bifurcates from the trivial solution (x=0) is proved. Conditions are given under which the nontrivial solutions are positive. A prerrequisite Fredholm and adjoint operator theory for linear periodic systems is developed. An application to application dynamics is made.  相似文献   

13.
Invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. The reductions carry all the advantages regarding Noether symmetries and double reductions via first integrals or conserved quantities. The examples we consider are nonlinear evolution type equations like the general form of the Fizhugh–Nagumo and KdV–Burgers equations. Some aspects of Painlevé properties of the reduced equations are also obtained.  相似文献   

14.
We study the solvability of nonlinear second order elliptic partial differential equations with nonlinear boundary conditions. We introduce the notion of “eigenvalue-lines” in the plane; these eigenvalue-lines join each Steklov eigenvalue to the first eigenvalue of the Neumann problem with homogeneous boundary condition. We prove existence results when the nonlinearities involved asymptotically stay, in some sense, below the first eigenvalue-lines or in a quadrilateral region (depicted in Fig. 1) enclosed by two consecutive eigenvalue-lines. As a special case we derive the so-called nonresonance results below the first Steklov eigenvalue as well as between two consecutive Steklov eigenvalues. The case in which the eigenvalue-lines join each Neumann eigenvalue to the first Steklov eigenvalue is also considered. Our method of proof is variational and relies mainly on minimax methods in critical point theory.  相似文献   

15.
This research presents a new constrained optimization approach for solving systems of nonlinear equations. Particular advantages are realized when all of the equations are convex. For example, a global algorithm for finding the zero of a convex real-valued function of one variable is developed. If the algorithm terminates finitely, then either the algorithm has computed a zero or determined that none exists; if an infinite sequence is generated, either that sequence converges to a zero or again no zero exists. For solving n-dimensional convex equations, the constrained optimization algorithm has the capability of determining that the system of equations has no solution. Global convergence of the algorithm is established under weaker conditions than previously known and, in this case, the algorithm reduces to Newton’s method together with a constrained line search at each iteration. It is also shown how this approach has led to a new algorithm for solving the linear complementarity problem.  相似文献   

16.
In this paper we present a new efficient sixth-order scheme for nonlinear equations. The method is compared to several members of the family of methods developed by Neta (1979) [B. Neta, A sixth-order family of methods for nonlinear equations, Int. J. Comput. Math. 7 (1979) 157-161]. It is shown that the new method is an improvement over this well known scheme.  相似文献   

17.
This paper is concerned with the solution of nonlinear algebraic systems of equations. For this problem, we suggest new methods, which are combinations of the nonlinear ABS methods and quasi-Newton methods. Extensive numerical experiments compare particular algorithms and show the efficiency of the proposed methods.The authors are grateful to Professors C. G. Broyden and E. Spedicato for many helpful discussions.  相似文献   

18.
In this paper, we present a new iterative method to solve systems of nonlinear equations. The main advantages of the method are: it has order three, it does not require the evaluation of any second or higher order Fréchet derivative and it permits that the Jacobian be singular at some points. Thus, the problem due to the fact that the Jacobian is numerically singular is solved. The third order convergence in both one dimension and for the multivariate case are given. The numerical results illustrate the efficiency of the method for systems of nonlinear equations.   相似文献   

19.
20.
The existence of solutions for many systems of integro-differential equations discovered and generalized in the process of applying the Galerkin method for some initial-boundary value problems will be investigated in this paper. U. V. Le is currently supported by the Academy of Finland and the Emil Aaltonen Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号