首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a simple repairable system (i.e. a one-component repairable system with one repairman) with preventive repair and failure repair is studied. Assume that the preventive repair is adopted before the system fails, when the system reliability drops to an undetermined constant R  , the work will be interrupted and the preventive repair is executed at once. And assume that the preventive repair of the system is “as good as new” while the failure repair of the system is not, and the deterioration of the system is stochastic. Under these assumptions, by using geometric process, we present a bivariate mixed policy (R,N)(R,N), respectively based on a scale of the system reliability and the failure-number of the system. Our aim is to determine an optimal mixed policy (R,N)(R,N) such that the long-run average cost per unit time (i.e. the average cost rate) is minimized. The explicit expression of the average cost rate is derived, and the corresponding optimal mixed policy can be determined analytically or numerically. Finally, a numerical example is given where the working time of the system yields a Weibull distribution. Some comparisons with a certain existing policy are also discussed by numerical methods.  相似文献   

2.
In this paper, the repair-replacement problem for a deteriorating cold standby repairable system is investigated. The system consists of two dissimilar components, in which component 1 is the main component with use priority and component 2 is a supplementary component. In order to extend the working time and economize the running cost of the system, preventive repair for component 1 is performed every time interval T, and the preventive repair is “as good as new”. As a supplementary component, component 2 is only used at the time that component 1 is under preventive repair or failure repair. Assumed that the failure repair of component 1 follows geometric process repair while the repair of component 2 is “as good as new”. A bivariate repair-replacement policy (TN) is adopted for the system, where T is the interval length between preventive repairs, and N is the number of failures of component 1. The aim is to determine an optimal bivariate policy (TN) such that the average cost rate of the system is minimized. The explicit expression of the average cost rate is derived and the corresponding optimal bivariate policy can be determined analytically or numerically. Finally, a Gamma distributed example is given to illustrate the theoretical results for the proposed model.  相似文献   

3.
4.
This paper analyzes a phase-type geometric process repair model with spare device procurement lead time and repairman’s multiple vacations. The repairman may mean here the human beings who are used to repair the failed device. When the device functions smoothly, the repairman leaves the system for a vacation, the duration of which is an exponentially distributed random variable. In vacation period, the repairman can perform other secondary jobs to make some extra profits for the system. The lifetimes and the repair times of the device are governed by phase-type distributions (PH distributions), and the condition of device following repair is not “as good as new”. After a prefixed number of repairs, the device is replaced by a new and identical one. The spare device for replacement is available only by an order and the procurement lead time for delivering the spare device also follows a PH distribution. Under these assumptions, the vector-valued Markov process governing the system is constructed, and several important performance measures are studied in transient and stationary regimes. Furthermore, employing the standard results in renewal reward process, the explicit expression of the long-run average profit rate for the system is derived. Meanwhile, the optimal maintenance policy is also numerically determined.  相似文献   

5.
This study applies periodic preventive maintenance (PM) to a repairable production system with major repairs conducted after a failure. This study considers failed PM due to maintenance workers incorrectly performing PM and damages occurring after PM. Therefore, three PM types are considered: imperfect PM, perfect PM and failed PM. Imperfect PM has the same failure rate as that before PM, whereas perfect PM makes restores the system perfectly. Failed PM results in system deterioration and major repairs are required. The probability that PM is perfect or failed depends on the number of imperfect maintenance operations conducted since the previous renewal cycle. Mathematical formulas for expected total production cost per unit time are generated. Optimum PM time that minimizes cost is derived. Various special cases are considered, including the maintenance learning effect. A numerical example is given.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(17-18):4323-4332
A system is subject to random shocks that arrive according to a phase-type (PH) renewal process. As soon as an individual shock exceeds some given level the system will break down. The failed system can be repaired immediately. With the increasing number of repairs, the maximum shock level that the system can withstand will be decreasing, while the consecutive repair times after failure will become longer and longer. Undergoing a specified number of repairs, the existing system will be replaced by a new and identical one. The spare system for the replacement is available only by sending a purchase order to a supplier, and the duration of spare system procurement lead time also follows a PH distribution. Based on the number of system failures, a new order-replacement policy (also called (K,N) policy) is proposed in this paper. Using the closure property of the PH distribution, the long-run average cost rate for the system is given by the renewal reward theorem. Finally, through numerical calculation, it is determined an optimal order-replacement policy such that the long-run expected cost rate is minimum.  相似文献   

7.
We consider a deteriorating system submitted to external and internal failures, whose deterioration level is known by means of inspections. There are two types of repairs: minimal and perfect, depending on the deterioration level, each one following a different phase-type distribution. The failures and the inspections follow different Markovian arrival processes (MAP). Under these assumptions, the system is governed by a generalized Markov process, whose state space and generator are constructed. This general model includes the phase-type renewal process as a special case. The distribution of the number of minimal and perfect repairs between two inspections are determined. A numerical application optimizing costs is performed, and different particular cases of the model are compared.  相似文献   

8.
Consider a system subject to two modes of failures: maintainable and non-maintainable. A failure rate function is related to each failure mode. Whenever the system fails, a minimal repair is performed. Preventive maintenances are performed at integer multiples of a fixed period. The system is replaced when a fixed number of preventive maintenances have been completed. The preventive maintenance is imperfect because it reduces the failure rate of the maintainable failures but does not affect the failure rate of the non-maintainable failures. The two failure modes are dependent in the following way: after each preventive maintenance, the failure rate of the maintainable failures depends on the total of non-maintainable failures since the installation of the system. The problem is to determine an optimal length between successive preventive maintenances and the optimal number of preventive maintenances before the system replacement that minimize the expected cost rate. Optimal preventive maintenance schedules are obtained for non-decreasing failure rates and numerical examples for power law models are given.  相似文献   

9.
研究由两个部件串联组成的系统的预防维修策略, 当系统的工作时间达到T时进行预防维修, 预防维修使部件恢复到上一次故障维修后的状态. 当部件发生故障后进行故障维修, 因为各种原因可能会延迟修理. 部件在每次故障维修后的工作时间形成随机递减的几何过程, 且每次故障后的维修时间形成随机递增的几何过程. 以部件进行预防维修的间隔T和更换前的故障次数N组成的二维策略(T,N)为策略, 利用更新过程和几何过程理论求出了系统经长期运行单位时间内期望费用的表达式, 并给出了具体例子和数值分析.  相似文献   

10.
一个可修系统的最优更换模型   总被引:14,自引:0,他引:14  
张元林  贾积身 《应用数学》1996,9(2):180-184
本文考虑了单部件、一个修理工组成的可修系统,在故障系统不能“修复如新”的前提下,我们利用几何过程,以系统年龄T为策略,选择最优的T使得系统经长期运行单位时间的期望效益达到最大.本文还在一定的条件下证明了最优更换策略T的唯一存在,且求出了系统经长期运行单位时间的最大期望效益的明显表达式.  相似文献   

11.
So far, there have been several concepts about fuzzy random variables and their expected values in literature. One of the concepts defined by Liu and Liu (2003a) is that the fuzzy random variable is a measurable function from a probability space to a collection of fuzzy variables and its expected value is described as a scalar number. Based on the concepts, this paper addresses two processes—fuzzy random renewal process and fuzzy random renewal reward process. In the fuzzy random renewal process, the interarrival times are characterized as fuzzy random variables and a fuzzy random elementary renewal theorem on the limit value of the expected renewal rate of the process is presented. In the fuzzy random renewal reward process, both the interarrival times and rewards are depicted as fuzzy random variables and a fuzzy random renewal reward theorem on the limit value of the long-run expected reward per unit time is provided. The results obtained in this paper coincide with those in stochastic case or in fuzzy case when the fuzzy random variables degenerate to random variables or to fuzzy variables.  相似文献   

12.
As many products are becoming increasingly more reliable, traditional lifetime-based burn-in approaches that try to fail defective units during the test require a long burn-in duration, and thus are not effective. Therefore, we promote the degradation-based burn-in approach that bases the screening decision on the degradation level of a burnt-in unit. Motivated by the infant mortality faced by many Micro-Electro-Mechanical Systems (MEMSs), this study develops two degradation-based joint burn-in and maintenance models under the age and the block based maintenances, respectively. We assume that the product population comprises a weak and a normal subpopulations. Degradation of the product follows Wiener processes with linear drift, while the weak and the normal subpopulations possess distinct drift parameters. The objective of joint burn-in and maintenance decisions is to minimize the long run average cost per unit time during field use by properly choosing the burn-in settings and the preventive replacement intervals. An example using the MEMS devices demonstrates effectiveness of these two models.  相似文献   

13.
We are given a set of items that must be produced in lots on a capacitated production system throughout a specified finite planning horizon. We assume that the production system is subject to random failures, and that any maintenance action carried out on the system, in a period, reduces the system’s available production capacity during that period. The objective is to find an integrated lot-sizing and preventive maintenance strategy of the system that satisfies the demand for all items over the entire horizon without backlogging, and which minimizes the expected sum of production and maintenance costs. We show how this problem can be formulated and solved as a multi-item capacitated lot-sizing problem on a system that is periodically renewed and minimally repaired at failure. We also provide an illustrative example that shows the steps to obtain an optimal integrated production and maintenance strategy.  相似文献   

14.
In this paper, we consider a maintenance and production model of a flexible manufacturing system. The maintenance activity involves lubrication, routine adjustments, etc., which reduce the machine failure rates and therefore reduce the aging of the machines. The objective of the problem is to choose the rate of maintenance and the rate of production that minimize the overall costs of inventory/shortage, production, and maintenance. It is shown that the value function is locally Lipschitz. Then, the existence of the optimal control policy is shown, and necessary and sufficient conditions for optimality are obtained.This research has been supported by NSERC-Canada, Grant OGP-003644 and FCAR-NC0271F.  相似文献   

15.
计及预防维修时间的一个故障维修模型   总被引:18,自引:0,他引:18  
本文研究了单部件一个修理工组成的可修系统,为延长其使用寿命,在故障前考虑了预防维修,且假定预防维修能“修复如新”,而故障维修为“修复非新”时,利用几何过程,以系统2次数N为更换策略,选择最优的N,使得系统经长期运行单位时间的期望费用最小,最后,还对预防维修的定长间隔时间及更换策略进行了讨论。  相似文献   

16.
** Email: shaomin.wu{at}reading.ac.uk Commonly used repair rate models for repairable systems in thereliability literature are renewal processes, generalised renewalprocesses or non-homogeneous Poisson processes. In additionto these models, geometric processes (GP) are studied occasionally.The GP, however, can only model systems with monotonously changing(increasing, decreasing or constant) failure intensities. Thispaper deals with the reliability modelling of failure processesfor repairable systems where the failure intensity shows a bathtub-typenon-monotonic behaviour. A new stochastic process, i.e. an extendedPoisson process, is introduced in this paper. Reliability indicesare presented, and the parameters of the new process are estimated.Experimental results on a data set demonstrate the validityof the new process.  相似文献   

17.
We investigate a system whose basic warranty coverage is minimal repair up to a specified warranty length. An additional service is offered whereby first failure is restored up to the consumers’ chosen level of repair. The problem is studied under two system replacement strategies: periodic maintenance before and after warranty. It turns out that our model generalizes the model of Rinsaka and Sandoh [K. Rinsaka, H. Sandoh, A stochastic model with an additional warranty contract, Computers and Mathematics with Applications 51 (2006) 179–188] and the model of Yeh et al. [R.H. Yeh, M.Y. Chen, C.Y. Lin, Optimal periodic replacement policy for repairable products under free-repair warranty, European Journal of Operational Research 176 (2007) 1678–1686]. We derive the optimal maintenance period and optimal level of repair based on the structures of the cost function and failure rate function. We show that under certain assumptions, the optimal repair level for additional service is an increasing function of the replacement time. We provide numerical studies to verify some of our results.  相似文献   

18.
A warm standby n-system with operational and repair times following phase-type distributions is considered. The online unit goes through degradating levels, determined by inspections. Two types of repairs are performed, preventive and corrective, depending on the degradation level. The standby units undergo corrective repair. This systems is governed by a level-dependent-quasi-birth-and-death proces (LDQBD process), whose generator is constructed. The availability, rate of occurrence of failures, and other quantities of interest are calculated. A numerical example including an optimization problem and illustrating the calculations is presented. This system extend other previously studied in the literature.  相似文献   

19.
A novel optimal preventive maintenance policy for a cold standby system consisting of two components and a repairman is described herein. The repairman is to be responsible for repairing either failed component and maintaining the working components under certain guidelines. To model the operational process of the system, some reasonable assumptions are made and all times involved in the assumptions are considered to be arbitrary and independent. Under these assumptions, all system states and transition probabilities between them are analyzed based on a semi-Markov theory and a regenerative point technique. Markov renewal equations are constructed with the convolution of the cumulative distribution function of system time in each state and corresponding transition probability. By using the Laplace transform to solve these equations, the mean time from the initial state to system failure is derived. The optimal preventive maintenance policy that will provide the optimal preventive maintenance cycle is identified by maximizing the mean time from the initial state to system failure, and is determined in the form of a theorem. Finally, a numerical example and simulation experiments are shown which validated the effectiveness of the policy.  相似文献   

20.
We consider a model in which when a device fails it is either repaired to its condition prior to failure or replaced. Moreover, the device is replaced at times kT, k = 1, 2, … The decision to repair or replace the device at failure depends on the age of the device at failure. We find the optimal block time, T0, that minimizes the long-run average cost of maintenance per unit time. Our results are shown to extend many of the well known results for block replacement policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号