首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glow discharge atomic spectrometry, includes principally glow discharge optical emission spectrometry (GD-OES) and GD mass spectrometry, has been widely applied in direct solid sample determination and surface depth analysis. There have been numerous methods adopted to enhance the emission signal in a GD-OES without losing the advantage of narrow spectral lines by using what is known as boosted GD sources, especially microwave discharge and magnetic field enhanced techniques. The addition of a magnetic field to the GD volume is an attractive option because it does not require much modification to the original source configuration, in addition,the presence of magnetic field lengths the drift path of electrons from plasma region to the anode,and therefore strengthens the sputtering, excitation, and ionization processes that good for signal generation.  相似文献   

2.
This paper describes a new type of glow discharge (GD) ion source coupled to a time-of-flight mass spectrometer (TOFMS). The GD is operated in the microsecond pulse (μs-pulse) mode. The operational parameters of the μs-pulse GD were optimized against the ion signals, giving 180 Pa for the discharge pressure, 3 A for the transient discharge current, 1.75 kHz for the discharge frequency and 2 μs for the discharge pulse duration. Experimental results show that the discharge current in the μs-pulse mode can be one order of magnitude higher than that obtained in the d.c. mode. The structure of the interface between the μs-pulse GD and the mass spectrometer was found to be critical, and a Macor disc must be applied in front of the sampling orifice in order to shield the sampling plate from the anode of the GD to achieve both a good vacuum and the best sputtering. A transient sputtering rate of 24.4 μs s−1 mm−2 was reached in the μs-pulse mode and was significantly higher than that for the d.c.-GD. Typical mass spectra of brass and nickel samples were studied and are discussed. © 1997 Elsevier Science B.V.  相似文献   

3.
A glow discharge (CD) ion source has been coupled to a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer using a four-element electrostatic lens to accelerate and focus ions generated external to the instrument’s high magnetic field into its analyzer cell. Like other CD mass spectrometers, GD-FT-ICR can provide a quantitative measure of bulk analyte concentration with good precision and accuracy. Although detection limits currently attainable are several orders of magnitude higher than the commercially available magnetic sector-based instrument, CD-FT-ICR holds promise for ultrahigh resolving power elemental mass analysis. Several schemes are proposed to lower the detection limits of the technique while still providing high enough resolution to resolve isobaric interferences.  相似文献   

4.
A miniature planar magnetron glow discharge source with a chamber volume of 60 ml has been designed and evaluated for the analysis of less than 1 μl of aqueous samples by atomic emission spectroscopy. Limits of detection for magnesium, silver, boron, europium and copper in the presence of a magnetic field are observed to be 3 to 40 times lower than for the source without a magnetic field when the measurements are made under the compromised discharge conditions for each type of source. Emission intensity in the presence of the magnetic field is found to increase as a square function of the discharge current. The improved detection limits for the magnetically enhanced glow discharge source are attributed to the increased current density of the discharge in the presence of the magnetic field which formed a plasma ring localized above the cathode surface. An RSD in the range 15–25% is observed for these measurements.  相似文献   

5.
A compact magnetically boosted radiofrequency glow discharge (GD) has been designed, constructed and its analytical potential evaluated by its coupling to a mass spectrometer (MS). Simple modifications to the original source configuration permitted the insertion of permanent magnets. Small cylindrical Nd–Fe–B magnets ( = 4 mm, h = 10 mm) were placed in an in-house-modified GD holder disc that allows easy and fast exchange of the magnets. The different processes taking place within the GD plasma under the influence of a magnetic field, such as sputtering, ionisation processes and ion transport into the MS, were studied using different GD operating conditions. Changes to the ionisation and ion transport efficiency caused by the magnetic field were studied using an rf-GD-TOFMS setup. A magnetic field of 60–75 gauss (G) was found not to affect the sputtering rates but to enhance the analyte ion signal intensities while decreasing the Ar species ion signals. Moreover, magnetic fields in this range were shown not to modify the crater shapes, enabling the fast and sensitive high depth resolved analysis of relatively thick coated samples (micrometre) by using the designed compact magnetically boosted rf-GD-TOFMS.
M. GanciuEmail:
  相似文献   

6.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

7.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

8.
To improve the existing ion transport optics of our glow discharge (GD)-Fourier transformion cyclotron resonance (FT-ICR) mass spectrometer, we simulated several ion trajectories between the GD source region and the ICR analyzer cell. These calculations suggested that a number of simple improvements, including the use of an ion flight tube and an electrically isolated conductance limit, would increase the efficiency of ion transfer through the fringing fields of the FT-ICR superconducting magnet and into the ICR analyzer cell. Ion beam intensity was monitored as a function of the distance between the GD source and the analyzer cell before and after implementing these improvements. A twentyfold improvement in the transport efficiency, as well as a fifteenfold enhancement in detected ET-ICR signals, was observed.  相似文献   

9.
本研究将辉光电离源与激光溅射电离源巧妙地结合在同一台仪器中,使固体样品在离子源腔体中既能辉光电离,也能激光电离;并且使用同一质量分析器,两种离子源的结果可以相互比对,进而得到更为准确的分析结果.此仪器主要由真空系统、离子源、离子传输系统、四极杆质量分析器及检测与数据采集系统等组成.实验中分别用两种离子源测试了标准样品SRM 1262b,并获得了半定量结果.结果表明,仪器具有定性能力强,分析速度快,检测灵敏度高等优点,对固体样品元素分析的检出限可达μg/g量级.实验表明,激光溅射电离质谱的性能优于辉光放电质谱.  相似文献   

10.
Glow Discharge (GD) spectroscopy is a well known and accepted technique for the bulk and surface composition analysis, while laser ablation (LA) provides analysis with high spatial-resolution analysis in LIBS (laser-induced breakdown spectroscopy) or when coupled to inductively coupled plasma spectrometry (ICP-OES or ICP-MS). This work concerns the construction of a Laser Ablation Glow Discharge Time-Of-Flight Mass Spectrometry (LA-GD-TOFMS) instrument to study the analytical capabilities resulting from the interaction of a laser-generated sample plume with a pulsed glow discharge. Two ablation configurations were studied in detail. In a first approach, the laser-generated plume was introduced directly into the GD, while the second approach generated the plume inside the GD. The ablated material was introduced at different times with respect to the discharge pulse in order to exploit the efficient ionization in the GD plasma. For both LA-GD configurations, direct ablation into the afterglow of the pulsed glow discharge leads to an ion signal enhancement of up to a factor of 7, as compared to the ablation process alone under the same experimental conditions. The LA-GD enhancement was found to occur exclusively in the GD afterglow, with a maximum ablation S/N occurring in a few hundred microseconds after the termination of the glow discharge. The duration of the enhanced signal is about two milliseconds. Both the laser pulse energy and the position of the ablation plume (with respect to the sampling orifice) were found to affect the amount of mass entering the afterglow region and consequently, the enhancement factor of ionization.  相似文献   

11.
报道了一种改进的微波等离子体增强放电(MPEGD)光源,并将这种联光源用于固体导电样品的分析,详细研究了它对分析物的检测能力和增感作用,证明该光源在固体样品成份分析和表面逐层分析中有良好的应用前景。  相似文献   

12.
<正>A novel ambient glow discharge ion source with improved line-cylinder electrodes is put forward and designed in this paper.The diameters of inner and outer electrodes are 0.16 and 4 mm respectively.With a special assembly method,a perfect coaxiality of the two electrodes is obtained.From the gas discharge experiment,it can be seen that the discharge can stably work in normal glow discharge mode.The operating currents of the ion source are in an order of milliamperes and can generate a much larger number and wider variety of reagent ions.The MS experiment shows that the ion source has higher detection sensitivity.  相似文献   

13.
The combination of radiofrequency pulsed glow discharge (RF-PGD) analytical plasmas with time-of-flight mass spectrometry (TOFMS) has promoted the applicability of this ion source to direct analysis of innovative materials. In this sense, this emerging technique enables multi-elemental depth profiling with high depth resolution and sensitivity, and simultaneous production of elemental, structural, and molecular information. The analytical potential and trends of this technique are critically presented, including comparison with other complementary and well-established techniques (e.g. SIMS, GD–OES, etc.). An overview of recent applications of RF-PGD–TOFMS is given, including analysis of nano-structured materials, coated-glasses, photovoltaic materials, and polymer coatings  相似文献   

14.
The fundamental characteristics of a new type of glow discharge source as designed by Grimm are described. The source incorporates a permanent magnet which causes the electrons in the plasma to execute a spiral motion about the lines of force of the electric field leading to enhanced collisional excitation, sputtering and light output as compared to the conventional source. The performance of the magnetic field glow discharge source in the analysis of mild and stainless steels is evaluated.  相似文献   

15.
辉光放电光谱法定量分析金属材料表面纳米级薄膜的研究   总被引:1,自引:0,他引:1  
介绍了利用辉光放电光谱法分析金属材料表面的纳米级薄膜。通过优化辉光光源的放电参数,计算标准样品的溅射率。溅射率经校正后,建立各元素的标准工作曲线,从而形成了纳米级薄膜的定量表面分析方法。试验证明,此方法对膜厚的测定具有很好的准确度和精密度,可应用于多种金属材料表面纳米级薄膜的研究。  相似文献   

16.
微波等离子体增强辉光放电光源激发温度的研究   总被引:2,自引:0,他引:2  
研究了一种改进型的微波等离子体增强辉光放电光源在光谱分析中的应用,对其重要的参数指标-激发温度进行了较为较细的考察。结果表明引入微波等离子体后辉光放电的激发温度明显高于单纯辉光放电时的激发温度。  相似文献   

17.
A liquid chromatography–particle beam/mass spectrometry (LC–PB/MS) method with electron impact (EI) and glow discharge (GD) ionization sources is presented for the determination of caffeic acid derivatives in echinacea tinctures. In this work, two commercially available echinacea ethanolic extracts were used as the test samples for the separation, identification, and quantification of the caffeic acid derivatives (caffeic acid, chlorogenic acid, cichoric acid, and caftaric acid), which are suggested to have beneficial medicinal properties. Detailed evaluations of the two primary controlling parameters for EI (electron energy and source block temperature) and GD (discharge current and pressure) sources were performed to determine optimal instrument operation conditions. The mass spectra obtained from both ion sources provide clear and simple molecular fragmentation patterns for each of the target analytes. The absolute detection limits for the caffeic acid derivatives were determined to be at subnanogram levels for both the EI and GD sources. The separation of the caffeic acid derivatives in echinacea was accomplished by reversed-phase chromatography using a C18 column and a gradient elution system of water containing 0.1% trifluoroacetic acid and methanol, with an analysis time of less than 40 min. A standard addition method was employed for the quantification of each of the caffeic acid derivatives in the tincture.  相似文献   

18.
A glow discharge ion source has been constructed for the mass spectrometric analysis of organic compounds. Characterization of the source has been made by studying the effect of pressure and discharge current on ionic distributions by anodic ion sampling along the discharge axis. Ion and electron densities and electronic temperatures have been calculated by using the single Langmuir probe technique to correlate the extraction efficiency with measured ion distributions and gain some insight into the ionization of organic molecules. The spectra obtained for several classes of organic compounds show that formation of parent-molecular ions by proton transfer, resulting partly from the background water molecules, is a major low energy process while charge transfer, Penning ionization, and electron ionization ace probably responsible for the fragmentation observed. The spectra result from the simultaneous occurrence of high and low energy reactions, and their structural information content is very high, yielding both molecular and extensive fragment ion information. The glow discharge ion source has proved to be essentially maintenance-free, easy to operate, stable, and can be used at reasonable mass resolution (up to 70001. The source also provides picogram range detection limits and has a linear response range of about six orders of magnitude, which makes it an interesting ion source for routine analysis. Preliminary work conducted with chromatographic interfaces indicates that its use can be easily extended to both gas and liquid chromatography.  相似文献   

19.
The energy transfer to the discharge gas due to various collision processes in the plasma and the heating of the sample are widely known effects in glow discharge (GD) spectroscopy. Despite of the considerable thermal effects and their serious influence on the performance of GD devices, measurements of the discharge gas and sample temperatures are not common at all. The gas temperature depends on the power absorption of the discharge as well as on the temperature of boundaries (sample and anode). In this work the influence of different anode materials in a Grimm-type source on the voltage–current characteristics, crater shapes and GD spectra is investigated. Anodes made of titanium and copper alloys, graphite, and steel with thermal conductivities covering a wide range of values are used. For a fixed voltage and pressure a decrease of the measured current is observed for bad thermal conductive anodes. Cooling of the sample results in an increase of the measured current. Both observations can be explained by changes of the discharge gas temperature. The temperature of the sample is measured from the back side and compared for different anodes. Further, it is found that the choice of the anode material (i) has no significant influence on the crater shape, (ii) results in slightly different sputtering rates and (iii) strong differences of the GD spectra.  相似文献   

20.
Use of a particle beam glow discharge (PB-GD) source for mass spectrometric determinations of deoxy- and ribonucleosides and nucleotides is described. Use of this combination of sample introduction and ion source decouples the vaporization and ionization steps, leading to very simple spectral structure. The mass spectra of these compounds are EI-like in nature, with clearly identified molecular ions and fragmentation patterns that are easily rationalized. The PB-GDMS combination can be operated in a flow injection mode wherein the analyte is injected directly into the solvent flow, or can also be coupled to a high-performance liquid chromatography (HPLC) system allowing LC/MS analysis of mixtures. Mass spectra obtained for nucleic acid bases, nucleosides, and nucleotides are readily obtained with injections of low-nanomole quantities. Representative PB-GDMS spectra for deoxy- and ribonucleosides, nucleotides, and mixed-base oligonucleotides are presented to demonstrate the capabilities of the GD source. Characteristic fragmentation peaks from the spectra of adenine, cytosine, guanine, and thymine were identified in 22-base sequences of single-stranded DNA. The PB-GD source is capable of producing spectra that may be used to identify the individual bases present in mixed-base DNA and RNA fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号