首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The C3H6O ion formed upon the dissociative ionization of 2-methoxyethanol is identified by a combination of several tandem mass spectrometry methods, including metastable ion (MI) characteristics, collisionally activated dissociation (CAD), and neutralization—reionization mass spectrometry (NRMS). The experimental data conclusively show that 2-methoxyethanol molecular ion, namely, HOCH2CH2OCH 3 , loses H2O to yield mainly the distonic radical ion ·CH2CH2OCH 2 + along with a smaller amount of ionized methyl vinyl ether, namely, CH2=CHOCH 3 . Ring-closed products, such as the oxetane or the propylene oxide ion are not observed. The proportion of ·CH2CH2OCH 2 + increases with decreasing internal energy of the 2-methoxyethanol ion, which indicates a lower critical energy for the pathway leading to this product than for the competitive generation of CH2=CHOCH 3 . The present study also uses MI, CAD, and NRMS data to assess the structure of the distonic ion+ (CH3)CHOCH2· (ring-opened ionized propylene oxide) and evaluate its isomerization proclivity toward the methyl vinyl ether ion.  相似文献   

2.
Examination of the reactions of the long-lived (>0.5-s) radical cations of CD3CH2COOCH3 and CH3CH2COOCD3 indicates that the long-lived, nondecomposing methyl propionate radical cation CH3CH2C(O)OCH 3 isomerizes to its enol form CH3CH=C(OH)OCH 3 H isomerization ? ?32 kcal/mol) via two different pathways in the gas phase in a Fourier-transform ion cyclotron resonance mass spectrometer. A 1,4-shift of a β-hydrogen of the acid moiety to the carbonyl oxygen yields the distonic ion ·CH2CH2C+ (OH)OCH3 that then rearranges to CH3CH=C(OH)OCH 3 probably by consecutive 1,5- and 1,4-hydrogen shifts. This process is in competition with a 1,4-hydrogen transfer from the alcohol moiety to form another distonic ion, CH3CH2C+(OH)OCH 2 · , that can undergo a 1,4-hydrogen shift to form CH3CH=C(OH)OCH 3 . Ab initio molecular orbital calculations carried out at the UMP2/6-31G** + ZPVE level of theory show that the two distonic ions lie more than 16 kcal/mol lower in energy than CH3CH2C(O)OCH 3 . Hence, the first step of both rearrangement processes has a great driving force. The 1,4-hydrogen shift that involves the acid moiety is 3 kcal/mol more exothermic (ΔH isomerization=?16 kcal/mol) and is associated with a 4-kcal/mol lower barrier (10 kcal/mol) than the shift that involves the alcohol moiety. Indeed, experimental findings suggest that the hydrogen shift from the acid moiety is likely to be the favored channel.  相似文献   

3.
The isomerization of linear C3H 3 + in its reaction with acetylene to cyclic C3H 3 + was studied with a quadrupole ion trap mass spectrometer. The reaction of linear C3H 3 + with 13C2H2 shows that isomerization takes place via a [C5H 5 + ]* activated complex that is unstable relative to disproportionation back into the cyclic and linear forms of C3H 3 + and acetylene. The formation of carbon-13 labeled cyclic and linear C,Hi indicates that isomerization involves skeletal exchange. Collisional stabilization of the [C5H 5 + ]* collision complex was achieved at a helium pressure of approximately 1 mtorr.  相似文献   

4.
The complexes [Et2NH2] 3 + [BiCl6]3? (I), [NH4]+[BiI4(C5H5N)2]?·2C5H5N (II), [Ph3MeP] 2 + [BiI5]2? (III), [Ph3MeP] 2 + [BiI5(C5H5N)]2?·C5H5N (IV), [Ph3MeP] 3 + [Bi3I12]3? (V), [Ph3(i-Pr)P] 3 + [Bi3I12]3?·2Me2C=O (VI), [Ph3BuP] 2 + [Bi2I8·2Me2C=O]2? (VII), and [Ph3BuP] 2 + [Bi2I8·2Me2S=O]2? (VIII) were obtained by reactions of bismuth iodide with ammonium and phosphonium iodides in acetone, pyridine, or dimethyl sulfoxide.  相似文献   

5.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

6.
The first three reactions of the Calcote mechanism for soot formation, that is, C3H 3 + +C2H2→C5H 5 + , C5H 5 + →C5H 3 + H2, and C5H 3 + +C2H2→C7H 5 + , have been studied based on chemi-ions withdrawn directly from a premixed methane-oxygen flame by supersonic molecular beam sampling. The first reaction is reversible and involves the formation of a specific encounter complex sensitive to pressure and ion kinetic energy. The second reaction appears to require large amounts of internal energy in the C5H 5 + ion to proceed. The third reaction is reversible; however, in contrast to the initiating reaction, the C5H 3 + ion formed from the [C7H 5 + ]* complex exhibits a much lower reactivity. The conclusions are based on ion-molecule reactions as well as collision activation mass spectrometry of isolated chemi-ions. In addition, the product distributions as functions of pressure and ion kinetic energy were studied.  相似文献   

7.
The collision-induced dissociation of the adduct ions C60(C4H8) 2 2+ and C60(C4H8) 3 2+ formed by sequential reactions of C 60 2+ with 1-butene has been investigated by using a selected-ion flow tube (SIFT) apparatus. Experiments at 295 ± 2 K in 0.35 ± 0.02 torr of helium indicated that C 60 2+ adds at least five molecules of 1-butene in a sequential fashion with rates that decrease with the number of molecules added. Collision-induced dissociation experiments in which the downstream sampling nose cone of the SIFT was biased with respect to the flow tube indicated that the adduct ions C60(C4H8) 2 2+ and C60(C4H8) 3 2+ dissociate into C 60 ·+ and (C4H8) 2 ·+ and (C4H8) 3 ·+ , respectively. These observations provide evidence for the occurrence of charge separation in the derivatization of C60 dications and support the “ball-and-chain” mechanism first proposed by Wang et al. in 1992 for the sequential multiple addition of 1,3-butadiene to C 60 2+ and C 70 2+ .  相似文献   

8.
Eleven isomers with the PyC2H 5 composition, which include three conventional (1–3) and eight distonic radical cations (4–11), have been generated and in most cases successfully characterized in the gas phase via tandem-in-space multiple-stage pentaquadrupole MS2 and MS3 experiments. The three conventional radical cations, that is, the ionized ethylpyridines C2H5-C5H4N (1–3), were generated via direct 70-eV electron ionization of the neutrals, whereas sequences of chemical ionization and collision-induced dissociation (CID) or mass-selected ion-molecule reactions were used to generate the distonic ions H2C·?C5H4N+?CH3 (4–6), CH3?C5H4N+?CH 2 · (7–9), C5H5N+?CH2CH 2 · (10), and C5H5N+?CH·?CH3 (11). Unique features of the low-energy (15-eV) CID and ion-molecule reaction chemistry with the diradical oxygen molecule of the isomers were used for their structural characterization. All the ion-molecule reaction products of a mass-selected ion, each associated with its corresponding CID fragments, were collected in a single three-dimensional mass spectrum. Ab initio calculations at the ROMP2/6–31G(d, p)//6–31G(d, p)+ZPE level of theory were performed to estimate the energetics involved in interconversions within the PyC2H5 system, which provided theoretical support for facile 4?7 interconversion evidenced in both CID and ion-molecule reaction experiments. The ab initio spin densities for the a-distonic ions 4–9 and 11 were found to be largely on the methylene or methyne formal radical sites, which thus ruled out substantial odd-spin derealization throughout the neighboring pyridine ring. However, only 8 and 9 (and 10) react extensively with oxygen by radical coupling, hence high spin densities on the radical site of the distonic ions do not necessarily lead to radical coupling reaction with oxygen. The very typical “spatially separated” ab initio charge and spin densities of 4–11 were used to classify them as distonic ions, whereas 1–3 show, as expected, “localized” electronic structures characteristic of conventional radical ions.  相似文献   

9.
Two different hydrogen-bonded inclusion compounds, [2,4,6-C5H2N(COO?)3]0.5·[C(NH2) 3 + ]0.5·[(C2H5)4N+]·2H2O (1) and [2,4,6-C5H2N(COO?)3]·[C(NH2) 3 + ]·[(C2H5)4N+]·[(C3H7)4N+]·6H2O (2) are reported in this paper, in which 2,4,6-pyridine-tricarboxylic anions, guanidiniums and water molecules jointly construct host lattices while tetraalkylammonium cations are accommodated as guest species. Both two compounds formed sandwich-like hydrogen-bond inclusion compounds. In compound 1, the dimers composed of 2,4,6-pyridine-tricarboxylic anions and guanidiniums form 2D hydrogen-bonded layers by connecting with water molecules. In compound 2, 2,4,6-pyridine-tricarboxylic anions, guanidiniums and water molecules contribute to generate an undulate rosette hydrogen-bonded architecture. Interestingly, in compound 2, there are two species of guest molecules, tetraethylammonium and tetrapropylammonium, which are alternately arranged between the neighboring layers. Mixed guest cations accommodated in hydrogen-bonded inclusion compounds are seldom seen.  相似文献   

10.
The reaction of equimolar amounts of triphenylamyl- and triphenylpropylphosphonium iodides and triethanolammonium iodide with antimony iodide in dimethyl sulfoxide, dioxane, or acetone gave complexes [Ph3AmP] 2 + [Sb2I8 · 2DMSO]2?, [Ph3PrP] 2 + [Sb2I8 · C4H8O2]2?, and [(HOCH2CH2)3NH] 4 + [Sb4I16]4?, the structure of which was established by X-ray diffraction analysis. The cations of all complexes have slightly distorted tetrahedral structure, and the antimony atoms in the anions are hexacoordinated. The crystals of the complexes have intra- and intermolecular contacts, which form the structure.  相似文献   

11.
Complexes [Ph3MeP] 2 + [BiI3.5Br1.5(C5H5N)]2? · C5H5N(I), [Ph4Bi] 4 + [Bi4I16]4? · 2Me2C=O (II), and [Ph3(iso-Am)P] 4 + [Bi8I28]4? · 2Me2C=O (III) were synthesized by reactions of bismuth iodide with triphenylmethylphosphonium bromide, triphenylbismuthonium sulfosalicylate, and triphenylisoamylphosphonium iodide, respectively. The crystal structures of complexes I–III were determined by X-ray crystallography. The complexes contain, in addition to cations and solvent molecules, mono-, tetra-, and octanuclear anions, in which bismuth atoms are in octahedral coordination.  相似文献   

12.
Photoionization was used to characterize the energy dependence of C3H 7 + , C3H 6 + , CH3OH 2 + and CH2=OH+ formation from (CH3)2)CHCH2OH+? (1) and CH3CH2CH2CH2OH+? (2). Decomposition patterns of labeled ions demonstrate that close to threshold these products are primarily formed through [CH 3 + CHCH3 ?CH2OH] (bd3) from 1 and through [CH3CH2CH2 ?CH2=OH+] (9) from 2. The onset energies for forming the above products from 1 are spread over 85 kJ mol?1, and are all near thermochemical threshold. The corresponding onsets from 2 are in a 19 kJ mol?1 range, and all except that of CH2=OH+ are well above their thermochemical thresholds. Each decomposition of 3 occurs over a broad energy range (> 214 kJ mol?1), This demonstrates that ion-permanent dipole complexes can be significant intermediates over a much wider energy range than ion-induced dipole complexes can be. H-exchange between partners in the complexes appears to be much faster than exchange by conventional interconversions of the alcohol molecular ions with their distonic isomers. The onsets for water elimination from 1 and 2 are below the onsets for the complex-mediated processes, demonstrating that the latter are not necessarily the lowest energy decompositions of a given ion when the neutral partner in the complex is polar.  相似文献   

13.
The elimination of ethene from CH3CH2NH=CH 2 + is characterized by ab initio procedures. This reaction occurs through several asynchronous stages, but without passing through formal intermediates. A potential energy barrier to hydrogen migration from the β carbon to N is largely determined by the energy required to cleave the CN bond, but is lowered slightly by H transfer from the β to the α carbon and then to N. The complex [C2H 5 + NH=CH2] is bypassed, even though that complex could exist at energies only slightly above that of the transition state for ethene elimination. Furthermore, conversion of a substantial reverse activation energy into energy of motion causes CH2=NH 2 + and CH2=CH2 to dissociate faster than they can form [CH2=NH 2 + CH2=CH2]. Comparison of results for CH3CH2NH=CH 2 + to ab initio ones for methane from CH3CH2CH 3 + and elimination of ethene from CH3CH2O=CH 2 + and CH3CH2CH=OH+ reveals that these dissociations occur in a similar but, in each case, a distinct series of asynchronous steps or stages, and that there is no sharp demarcation between concerted and stepwise eliminations as presently defined. In dissociations of CH3CH2NH=CH 2 + , loss of electron density at the C in the breaking N bond leads the transfer of electron density to that carbon by migration of a hydrogen from the adjacent C. We attribute this to a requirement for the moving H to be close to Cα before the moving H can start to develop covalent bonding to Cα. It is also concluded that elimination of ethene from CH3CH2NH=CH 2 + avoids a Woodward-Hoffmann symmetry-imposed barrier by H migrating sufficiently from the β to the α carbon on the way to N, so that the dissociation is essentially a 1,1 rather than a 1,2 elimination.  相似文献   

14.
The gas-phase reactions of negative ions (O-., NH 2 ? , C2H5NH?, (CH3)2N?, C6H 5 t- , and CH3SCH 2 ? ) with fluorobenzene and 1,4-difluorobenzene have been studied with Fourier transform ion cyclotron resonance mass spectrometry. The O?. ion reacts predominantly by (1) proton abstraction, (2) formal H 2 +. abstraction, and (3) attack on an unsubstituted carbon atom. In addition to these processes, attack on a fluorine bearing carbon atom yielding F? and C6H4FO? ions occurs with 1,4-difluorobenzene. Site-specific deuterium labeling reveals the occurrence of competing 1,2-, 1,3-, and 1,4-H 2 +. abstractions in the reaction of O?. with fluorobenzene. Attack of the O?. ion on the 3- and 4-positions in fluorobenzene with formation of the 3- and 4-fluorophenoxide ions, respectively, is preferred to reaction at the 2-position, as indicated by the relative extent of loss of a hydrogen and a deuterium atom in the reactions with labeled fluorobenzenes. The NH 2 ? , C2H5NH?, (CH3)2N?, C6H 5 ? , and CH3SCH 2 ? anions react with fluoroberuene and 1,4-difluorobenzene only by proton abstraction. The relative importance of H+ and D+ abstraction in the reaction of these anions with labeled fluorobenzenes indicates that the 2-position in fluorobenzene is more acidic than the 3- and 4-positions, suggesting that the literature value of the gas-phase acidity of this compound (ΔH acid o = 1620 ± 8 kJ mol?1) refers to the former site. Based on the occurrence of reversible proton transfer between the CH3O? ion and 1,4-difluorobenzene, the ΔH acid o of this compound is redetermined to be 1592 ± 8 kJ mol?1.  相似文献   

15.
Reactivity of positively charged cobalt cluster ions (Co n + ,n=2?22), produce by laser vaporization, with various gas samples (CH4, N2, H2, C2H4, and C2H2) were systematically investigated by using a fast-flow reactor. The reactivity of Co n + with the various gas samples is qualitatively consistent with the adsorption rate of the gas to cobalt metal surfaces. Co n + highly reacts with C2H2 as characterized by the adsorption rate to metal surfaces, and it indicates no size dependence. In contrast, the reactions of Co n + with the other gas samples indicate a similar cluster size dependence; atn=4, 5, and 10?15, Co n + highly reacts. The difference can be explained by the amount of the activation energy for chemisorption reaction. Compared with neutral cobalt clusters, the size dependence is almost similar except for Co 4 + and Co 5 + . The reactivity enhancement of Co 4 + and Co 5 + indicates that the cobalt cluster ions are presumed to have an active site for chemisorption atn=4 and 5, induced by the influence of positive charge.  相似文献   

16.
Iodocyclization products of 2-allylthioquinoline are obtained in the form of polyiodides with different stoichiometric compositions. X-ray crystallography data are analyzed for two different crystal structures of 1-iodomethyl-1,2-dihydro[1,3]thiazolo[3,2-a]quinolinium polyiodides: triiodide C12H11INS+I 3 ? and complex polyiodide 2(C12H11INS+I 3 ? )·I2. A comparison is made of the nonbonding interactions of dihydrothiazoloquinolinium with atoms of the triiodide anion and complex polyiodide to show the crystal structure features attributed to the participation of molecular iodine.  相似文献   

17.
A new technique is presented which allows direct observation of initial kinetic energies in multiphoton ionisation-fragmentation processes of molecules and clusters and provides an unambiguous determination of metastable decay channels. Results are presented for the unimolecular loss of a monomer from clusters (C6H6) 8 + to (C6H6) 12 + and for the reaction C6H 6 + →C4H 4 + +C2H2. We also observe a significant amount of probably collision induced fragmentation processes (C6H6) n + →(C6H6) n?x + + (C6H6) x withx much larger than 1.  相似文献   

18.
Membrane introduction mass spectrometry (MIMS) is used to sample free radicals generated by thermolysis at atmospheric pressure. This is done by heating the solid sample in a custom-made probe that is fitted with a silicone membrane to allow selective and rapid introduction of the pyrolysates into the ion source of a triple quadrupole mass spectrometer. Phenyldiazonium radical (C6H5N 2 · ) and some of its ring-substituted analogs, the methoxy anilino radical CH3OC6H4NH·, and aryl radicals are generated by gas phase thermolysis of symmetrical aryl diazoamino compounds (ArNH-N2Ar). The radicals are identified by measurement of their ionization energies (IE) using threshold ionization efficiency data. A linear correlation between the ionization energy of the phenyldiazonium radicals and their Brown σ+ values is observed, and this confirms the formation of these species and validates the applicability of MIMS in sampling these radicals. The ionization energies of the aryldiazonium radicals are estimated as IE (p-CH3O-C6H4N 2 · ), 6.74 ± 0.2 eV; IE (p-CH3-C6H4N 2 · ), 7.72 ± 0.2 eV; IE (C6H5N 2 · ), 7.89 ± 0.2 eV; IE (m-Cl-C6H4N 2 · ), 7.91 ± 0.2 eV; IE (p-F-C6H 4 · N 2 · ), 8.03 ± 0.2 eV; and IE (m-NO2-C6H4N 2 · ), 8.90 = 0.2 eV. The ionization energies of the aryl radicals are estimated as IE (p-CH3O-C6H 4 · ), 7.33 ± 0.2 eV; IE (p-CH3-C6H 4 · ), 8.31 ± 0.2 eV; IE (C6H 5 · ), 8.44 ± 0.2 eV; IE (m-Cl-C6H 4 · ), 8.50 ± 0.2 eV and IE (p-F-C6H 4 · ), 8.54 ± 0.2 eV. Also, the ionization energy of the p-methoxyanilino radical (p-CH3O-C6H4NH·) is estimated as 7.63 ± 0.2 eV.  相似文献   

19.
Specific ion/molecule reactions are demonstrated that distinguish the structures of the following isomeric organosilylenium ions: Si(CH3) 3 + and SiH(CH3)(C2H5)+; Si(CH3)2(C2H5)+ and SiH(C2H5) 2 + ; and Si(CH3)2(i?C3H7)+, Si(CH3)2(n?C3H7)+, Si(CH3)(C2H5) 2 + , and Si(CH3)3(π?C2H4)+. Both methanol and isotopically labeled ethene yield structure-specific reactions with these ions. Methanol reacts with alkylsilylenium ions by competitive elimination of a corresponding alkane or dehydrogenation and yields a methoxysilylenium ion. Isotopically labeled ethene reacts specifically with alkylsilylenium ions containing a two-carbon or larger alkyl substituent by displacement of the corresponding olefin and yields an ethylsilylenium ion. Methanol reactions were found to be efficient for all systems, whereas isotopically labeled ethene reaction efficiencies were quite variable, with dialkylsilylenium ions reacting rapidly and trialkylsilylenium ions reacting much more slowly. Mechanisms for these reactions and differences in the kinetics are discussed.  相似文献   

20.
Triphenylguanidinium Ph3GH+ salts with the anions B10H 10 2? , B12H 12 2? , B9C2H 12 2? , [Co(C2B9H11)2]?, and [Ni(C2B9H11)2]? were synthesized and described by DTA, IR spectroscopy, and solid-state luminescence. By IR spectroscopy, it was shown that intermolecular interactions involving the NH groups of the cation are enhanced in the sequence [Co(C2B9H11)2]? ~ [Ni(C2B9H11)2]? < B9C2H 12 2? < B12H 12 2? < B10H 10 2? .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号