首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is demonstrated by means of metastable ions characteristics, collisional activation, deuterium labelling and appearance energy measurements that ionized ethyl isobutyl ether and ethyl n-butyl ether isomerize prior to decomposition. The lower critical energy fragmentation gives [CH3CH2OCHCH3]+ ions. A mechanism of isomerization is proposed in which 1,4 hydrogen migration on the oxygen atom is coupled with rearrangement of the butyl chain.  相似文献   

2.
3.
The C8H9+-ion, formed from the molecular ions of 2-phenyl-1-bromoethane, 1-phenyl-1-bromoethane and of 1-phenyl-1-nitroethane by loss of the bromine atom and of the nitro group, splits off a molecule of acetylene after an almost complete randomization of hydrogens, as proved by deuteration. An eight-membered ring structure for the C8H9+-ion is proposed to explain these results. By loss of the nitro group from the molecular ions of 1-phenyl-1-nitropropane and of 1-phenyl-2-nitropropane the well-known phenylated cyclopropane ion3 (C9H11)+ is generated. Mass spectra of analogues, specifically deuterated in the side-chain, show that in this ion a randomization of hydrogen atoms in the cyclopropane ring as well as a hydride transfer from the cyclopropane ring to the phenyl cation occur.  相似文献   

4.
5.
6.
The structure of the [C2H5O]+ ion in the spectrum of diethyl ether was examined by use of deuterated ether, CH3CD2OCH2CH3. The results show that, at all electron energies from threshold to 70 eV, the predominant ion is a rearrangement ion, probably protonated acetaldehyde, with very little of the [C2H5O]+ being formed by direct carbon-oxygen bond cleavage. Appearance potential measurements made on the m/e 45, m/e 46 and m/e 47 ions in the deuterated ether show that the threshold structure of the rearrangement ion is protonated acetaldehyde.  相似文献   

7.
The proton transfer equilibrium reactions involving 3-penten-2-one, 3-methyl-3-buten-2-one, crotonic acid and methacrylic acid were carried out in an ion cyclotron resonance (ICR) spectrometer. The semiempirical method MNDO, used to estimate the heats of formation for 14 protonated [C5H9O]+ and [C4H7O2]+ ions and the energetic aspect of the fragmentations of metastable [C6H12O]+. and [C6H12O2]+. ions, leads to the conclusion that the ions corresponding to protonation at the carbonyl oxygen are the most stable. Thus the experimentally determined heats of formation of protonated olefinic carbonyl compounds can be attributed to the following structures: [CH3COHCHCHCH3]+ (δHf = 490 KJ mol?1), [CH3COHC(CH3)CH2]+ (δHf = 502 KJ mol?1), [HOCOHCHCHCH3]+ (δHf = 330 KJ mol?1) and [HOCOHC(CH3)CH2]+ (δHf = 336 KJ mol?1).  相似文献   

8.
9.
The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.22 at 850 K to 0.97 at 500 K. The third energetically accessible channel producing C(6)H(4) + HONO was found to be uncompetitive throughout the temperature range investigated, 500-2000 K. The predicted rate constants for C(6)H(5)NO(2) --> C(6)H(5) + NO(2) and C(6)H(5)O + NO --> C(6)H(5)ONO under varying experimental conditions were found to be in good agreement with all existing experimental data. For C(6)H(5) + NO(2), the combination processes producing C(6)H(5)ONO and C(6)H(5)NO(2) are dominant at low temperature and high pressure, while the disproportionation process giving C(6)H(5)O + NO via C(6)H(5)ONO becomes competitive at low pressure and dominant at temperatures above 1000 K.  相似文献   

10.
11.
Abundance ratios of C2H4 and CO loss (CH4 and O loss) in the field-free region of a mass spectrometer have been determined by mass resolution of metastable peaks. Using the method ofShannon andMcLafferty the abundance ratios have been applied to characterize the structure of metastable ions. C3H5O+ ions from 10 compounds and C4H7O+ ions from 14 compounds have been examined. In the case of C3H5O+, three types of structurally different isomers are present. C4H7O+ ions represent a not equilibrating mixture of different. structures in some cases. From examination of 2-pentanone-1,1,1,3,3-d 5, metastable C4H7O+ ions from 2-pentanone have been shown to consist of two structurally distinct types of ions which are assumed to be $$\begin{array}{*{20}c} {CH_2 - O^ + } \\ {\begin{array}{*{20}c} | & {||} \\ \end{array} } \\ {CH_2 - C - CH_3 } \\ \end{array}$$ and butyryl ion.  相似文献   

12.
13.
14.
15.
The mass spectra of ring deuterated and 13C labelled cinnamylalcohol give evidence of a partial hydrogen scrambling which is not accompanied by carbon skeleton rearrangements.  相似文献   

16.
To date only one product, biphenyl, has been reported to be produced from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions. In this study, we have investigated some unique products of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via both experimental observation and theoretical modeling. In the experimental study, gas-phase reaction products produced from the pyrolysis of selected aromatics and aromatic/acetylene mixtures were detected by an in situ technique, vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometry (TOFMS). The mass spectra revealed a remarkable correlation in mass peaks at m/z = 154 {C(12)H(10) (biphenyl)} and m/z = 152 {C(12)H(8) (?)}. It also demonstrated an unexpected correlation among the HACA (hydrogen abstraction and acetylene addition) products at m/z = 78, 102, 128, 152, and 176. The analysis of formation routes of products suggested the contribution of some other isomers in addition to a well-known candidate, acenaphthylene, in the mass peak at m/z = 152 (C(12)H(8)). Considering the difficulties of identifying the contributing isomers from an observed mass number peak, quantum chemical calculations for the above-mentioned reactions were performed. As a result, cyclopenta[a]indene, as-indacene, s-indacene, biphenylene, acenaphthylene, and naphthalene appeared as novel products, produced from the possible channels of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions rather than from their previously reported formation pathways. The most notable point is the production of acenaphthylene and naphthalene from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via the PAC (phenyl addition-cyclization) mechanism because, until now, both of them have been thought to be formed via the HACA routes. In this way, this study has paved the way for exploring alternative paths for other inefficient HACA routes using the PAC mechanism.  相似文献   

17.
18.
Due to the world's over-reliance on fossil fuels there has been a developing interest in the production of renewable biofuels such as methyl and ethyl esters derived from vegetable oils and animal fats. To increase our understanding of the combustion chemistry of esters, the oxidation of methyl butanoate and ethyl propanoate, both with a molecular formula of C5H10O2, have been studied in a series of high-temperature shock tube experiments. Ignition delay times for a series of mixtures, of varying fuel/oxygen equivalence ratios (phi = 0.25-1.5), were measured behind reflected shock waves over the temperature range 1100-1670 K, and at pressures of 1.0, and 4.0 atm. It was found that ethyl propanoate was consistently faster to ignite than methyl butanoate, particularly at lower temperatures. Detailed chemical kinetic mechanisms have been assembled and used to simulate these experiments with good agreement observed. Rate of production analyses using the detailed mechanisms shows that the faster reactivity of ethyl propanoate can be explained by a six-centered unimolecular decomposition reaction with a relatively low activation energy barrier producing propanoic acid and ethylene. The elimination reaction itself is not responsible for the increased reactivity; it is the faster reactivity of the two products, propanoic acid and ethylene that leads to this behavior.  相似文献   

19.
The decomposition reactions of [C2H5O]+ ions produced by dissociative electron-impact ionization of 2-propanol have been studied, using 13C and deuterium labeling coupled with metastable intensity studies. In addition, the fragmentation reactions following protonation of appropriately labeled acetaldehydes and ethylene oxides with [H3]+ or [D3]+ have been investigated. In both studies particular attention has been paid to the reactions leading to [CHO]+, [C2H3]+ and [H3O]+. In both the electron-impact-induced reactions and the chemical ionization systems the fragmentation of [C2H5O]+ to both [H3O]+ and [C2H3]+ proceeds by a single mechanism. For each case the reaction involves a mechanism in which the hydrogen originally bonded to oxygen is retained in the oxygen containing fragment while the four hydrogens originally bonded to carbon become indistinguishable. The fragmentation of [C2H5O]+ to produce [CHO]+ proceeds by a number of mechanisms. The lowest energy route involves complete retention of the α carbon and hydrogen while a higher energy route proceeds by a mechanism in which the carbons and the attached hydrogens become indistinguishable. A third distinct mechanism, observed in the electron-impact spectra only, proceeds with retention of the hydroxylic hydrogen in the product ion. Detailed fragmentation mechanisms are proposed to explain the results. It is suggested that the [C2H5O]+ ions formed by protonation of acetaldehyde or ionization of 2-propanol are produced initially with the structure [CH3CH?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H] (a), but isomerize to [CH2?CH? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H2] (e) prior to decomposition to [C2H3]+ or [H3O]+. The results indicate that the isomerization ae does not proceed directly, possibly because it is symmetry forbidden, but by two consecutive [1,2] hydrogen shifts. A more general study of the electron-impact mass spectrum of 2-propanol has been made and the fragmentation reactions proceeding from the molecular ion have been identified.  相似文献   

20.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号