首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An electrostatic ion guide (EIG) that consists of concentric cylinder and central wire electrodes can transport ions efficiently from an external ion source to an ion cyclotron resonance (ICR) ion trap for mass analysis, with several advantages over current injection methods. Because the electrostatic force of the EIG captures ions in a stable orbit about the wire electrode, ions with initially divergent trajectories may be redirected toward the ICR ion trap for improved ion transmission efficiency. SIMION trajectory calculations (ion kinetic energy, 1–200 eV; elevation angle, 0.30 °; azimuthal angle, 0.360°) predict that ions of m/z 1000 may be transmitted through a strong (0.01 → 3.0-T) magnetic field gradient. Judicious choice of ion source position and EIG potential minimizes the spread in ion axial kinetic energy at the ICR ion trap. Advantages of the EIG include large acceptance angle, even for ions that have large initial kinetic energy and large radial displacement with respect to the central z-axis, low ion extraction voltage (5–20 V), and efficient trapping because ions need not be accelerated to high velocity to pass through the magnetic field gradient.  相似文献   

2.
The performance of an electrostatic ion guide for use in chemical ionization mass spectrometry is evaluated. The study focuses on the use of the ion guide to extract charged particles in a rapidly expanding beam consisting of ions and neutral molecules. A theoretical analysis of this system is presented, using three-dimensional calculations of the trajectories of ions. Laboratory measurements verifying the theoretical calculations are also reported. The results illustrate the two principal advantages for this system: efficient ion transmission and ion–neutral molecule separation. A comparison between the ion guide and the commonly used electrostatic ion lenses shows that the ion guide is significantly more efficient in capturing and transporting charged particles from a diverging ion source.  相似文献   

3.
Bioearosol mass spectrometry (BAMS) analyzes single particles in real time from ambient air, placing strict demands on instrument sensitivity. Modeling of the BAMS reflectron time of flight (TOF) with SIMION revealed design limitations associated with ion transmission and instrument sensitivity at higher masses. Design and implementation of a BAMS linear TOF with electrostatic ion guide and delayed extraction capabilities has greatly increased the sensitivity and mass range relative to the reflectron design. Initial experimental assessment of the new instrument design revealed improved sensitivity at high masses as illustrated when using standard particles of cytochrome C (m/z approximately 12,000), from which the compound's monomer, dimer (m/z approximately 24,000) and trimer (m/z approximately 36,000) were readily detected.  相似文献   

4.
A new approach to electrostatic ion deflection is described where an electrostatic particle guide (EPG) operating with reversed polarity is used to deflect ions in a cylindrical geometry about the axis of a time-of-flight mass spectrometer. The method has advantages over the standard parallel-plate deflector geometry in that it is more effective in deflecting ion beams that have a significant radial velocity component. The device is being used in 252cs Cf plasma desorption mass spectrometry (252cs Cf -PDMS) experiments in an on/off mode to record neutral particle spectra and in a synchronized pulsed mode to reduce the magnitude of the uncorrelated background in the time-of-flight spectrum. Radial distribution functions have been measured for various EPG voltages. Its use as a background suppression technique is demonstrated by using the 252cs Cf-PDMS spectrum of insulin. (28-36)  相似文献   

5.
Recently, Benner described an electrostatic ion trap based on the repetitive reflection of ions between two electrostatic mirrors. This paper presents stability conditions for spatial and temporal focusing that the trap must satisfy in order to achieve optimum resolution when operated as a mass spectrometer. Also presented is an example of a theoretical design satisfying both the spatial and temporal focusing conditions.  相似文献   

6.
The effect of fringing fields on the divergence of the ion beam exiting an RF quadrupole ion guide was studied using a computer simulation. It was shown that reducing the strength of the RF field towards the ion guide exit reduces ion beam divergence. Further improvement was demonstrated when creating a DC gradient towards the exit. The results of the numerical simulation were verified experimentally using a time-of-flight (TOF) mass analyzer with orthogonal acceleration. Decreasing the ion beam divergence resulted in considerably improved mass resolution of the instrument.  相似文献   

7.
The guiding properties of individual rotational states of deuterated ammonia inside an electrostatic hexapole guide are presented. The guide is combined with resonance enhanced multiphoton ionization detection to assess the guiding probabilities and velocity distributions as a function of the rotational quantum numbers J and K. Due to the differences in the effective dipole moment these states are prepared at significantly different translational temperatures. A model is presented that describes the velocity-distribution for individual M-sublevels, and this model is also used to determine a rotational-state dependent translational temperature. Furthermore, the hexapole field has been replaced by a dipole field in order to obtain a band-pass velocity filter. However, the resulting change in the final velocity distribution is similar to that obtained from a hexapole guide but with increased backing pressure, leading to collisional acceleration of the slow molecules.  相似文献   

8.
This paper presents a detailed experimental study combined with Monte Carlo (MC) simulations within the primitive model of the physical chemistry at the ettringite-water interface over a wide range of pH and bulk conditions for which ettringite exists thanks to its solubility in aqueous solutions. Ettringite, which is an important phase in hydrated cement-based systems, bears a permanent and positive structural charge. In contrast with previous studies, electrokinetic measurements together with the careful chemical analysis of the equilibrium solutions of the dispersions have brought strong support to designate sulfate as being the ion determining the potential. Simulations showed that electrostatics, through ion-ion correlations, are not strong enough to explain the charge reversal of ettringite immersed in sulfate salt solutions. However, an excellent agreement between simulated and experimental data was obtained including a short-range nonelectrostatic adsorption potential for the sulfate ion. This result strongly suggests the existence of a chemical specificity of sulfate ions for an ettringite surface.  相似文献   

9.
By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.  相似文献   

10.
Summary The purpose of this paper is to present experimental results in order to test the electrostatic theory. The experimental results for a number of different analytes and amphiphilic modifiers are compared with the theory. It is found that the experimental results are in good agreement with the predictions from the electrostatic theory.  相似文献   

11.
Summary A quantitative model for ion pair chromatography based on the electrostatic theory is described. The model is based on the solution of the linearised Poisson-Boltzmann equation in a cylinder. The obtained equations are compared with experimental data from a number of different systems. The agreement between theory and experiments is satisfactorily. Systematic deviations due to the use of the linearised equation and ion correlation effects are discussed.  相似文献   

12.
Transmission mode ion/ion reactions have been performed within the first quadrupole, the Q0 radiofrequency (RF)‐only quadrupole, of two types of hybrid tandem mass spectrometers (viz., triple quadrupole/linear ion trap and QqTOF instruments). These transmission mode reactions involved the storage of either the reagent species and the transmission of the analyte species through the Q0 quadrupole for charge inversion reactions or the storage of the analyte ions and transmission of the reagent ions as in charge reduction experiments. A key advantage to the use of transmission mode ion/ion reactions is that they do not require any instrument hardware modifications to provide interactions of oppositely charged ions and can be implemented in any instrument that contains a quadrupole or linear ion trap. The focus of this work was to investigate the potential of using the RF‐only quadrupole ion guide positioned prior to the first mass‐resolving element in a tandem mass spectrometer for ion/ion reactions. Two types of exemplary experiments have been demonstrated. One involved a charge inversion reaction and the other involved a charge reduction reaction in conjunction with ion parking. Ion/ion reactions proved to be readily implemented in Q0 thereby adding significantly greater experimental flexibility in the use of ion/ion reaction experiments with hybrid tandem mass spectrometers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The use of radio-frequency (RF)-only ion guides for efficient transport of ions through regions of a mass spectrometer where the background gas pressure is relatively high is widespread in present instrumentation. Whilst multiple collisions between ions and the background gas can be beneficial, for example in inducing fragmentation and/or decreasing the spread in ion energies, the resultant reduction of ion axial velocity can be detrimental in modes of operation where a rapidly changing influx of ions to the gas-filled ion guide needs to be reproduced at the exit. In general, the RF-only ion guides presently in use are based on multipole rod sets. Here we report investigations into a new mode of ion propulsion within an RF ion guide based on a stack of ring electrodes. Ion propulsion is produced by superimposing a voltage pulse on the confining RF of an electrode and then moving the pulse to an adjacent electrode and so on along the guide to provide a travelling voltage wave on which the ions can surf. Through appropriate choice of the travelling wave pulse height, velocity and gas pressure it will be shown that the stacked ring ion guide with the travelling wave is effective as a collision cell in a tandem mass spectrometer where fast mass scanning or switching is required, as an ion mobility separator at pressures around 0.2 mbar, as an ion delivery device for enhancement of duty cycle on an orthogonal acceleration time-of-flight (oa-TOF) mass analyser, and as an ion fragmentation device at higher wave velocities.  相似文献   

14.
A polyelectrolyte (BiPE) containing bipyridine ligands as metal ion receptors and quaternary ammonium groups is described, which can be assembled via electrostatic interactions or metal ion coordination. Electrostatic layer-by-layer self-assembly of BiPE with sodium poly(styrene sulfonate) (PSS) as oppositely charged component results in striated multilayers. The BiPE/PSS multilayers can reversibly bind and release transition metal ions including Fe(II), Ni(II), and Zn(II). Formation of 2-D arrays of metallo-units is achieved by μ-contact stamping transition metal salts onto the BiPE/PSS interface. Also, multilayers of BiPE are readily assembled through metal ion coordination. Due to the reversible nature of metal ion coordination, exposure of the multilayers to EDTA causes instant disassembly of the layer, a property needed to implement stimulus triggered release functions. The importance of metal ion coordination for multilayer formation is demonstrated by force-distance curves measured with AFM.  相似文献   

15.
An electrostatic ion chromatographic (IC) method for rapid and direct determination of iodide in seawater is reported. Separation was achieved using a reversed-phase ODS packed column (250x4.6 mm I.D.) modified by coating with Zwittergent-3-14 micelles, with an eluent comprising an aqueous solution containing 0.2 mM NaClO4 and 0.3 mM Zwittergent-3-14 and using UV detection at 210 nm. Samples prepared by dissolving NaIO3, NaNO2, NaBr, NaBrO3, NaNO3, NaI, and NaSCN in artificial or real seawaters were analyzed using this IC system. Nitrite, iodate, bromide, bromate, and nitrate showed very little or no retention, while iodide and thiocyanate were well separated, being eluted within 6 and 16 min, respectively. The detection limit for iodide obtained by injecting 400 microL of sample was 0.011 microM (S/N = 3), and the precision values obtained by analyzing samples containing 0.1 or 0.3 microM iodide in real seawater samples were 2.3% RSD and 1.2% RSD, respectively. Direct determination of iodide in real seawater samples was possible using this proposed IC system.  相似文献   

16.
17.
The SASAPOS protocol, a general reaction sequence allowing complete exchange of various neutral ligands X in organic, elementorganic, and inorganic systems by cationic ligands L+, has been applied to a variety of pentafluorophenyl-substituted dyes of the general formula C6F5-X=Y-D (X, Y = N, CH; D = donor substituted arene), yielding the corresponding polycationically substituted dyes. The perturbation of the chromophores by the massive electrostatic effects introduced via the SASAPOS method led to bathochromic shifts of the absorption maxima of up 140 nm, 7600 cm-1, respectively. A strong dependency of the specific shifts on the nature of the connecting pi linker -X=Y- (N vs CH) has been detected by UV-vis absorption spectroscopy. Additionally, the effects of resubstitution of cationic ligands L+ by OH and O- have been studied.  相似文献   

18.
19.
To improve the existing ion transport optics of our glow discharge (GD)-Fourier transformion cyclotron resonance (FT-ICR) mass spectrometer, we simulated several ion trajectories between the GD source region and the ICR analyzer cell. These calculations suggested that a number of simple improvements, including the use of an ion flight tube and an electrically isolated conductance limit, would increase the efficiency of ion transfer through the fringing fields of the FT-ICR superconducting magnet and into the ICR analyzer cell. Ion beam intensity was monitored as a function of the distance between the GD source and the analyzer cell before and after implementing these improvements. A twentyfold improvement in the transport efficiency, as well as a fifteenfold enhancement in detected ET-ICR signals, was observed.  相似文献   

20.
Life as we know it is dependent upon water, or more specifically salty water. Without dissolved ions, the interactions between biological molecules are insufficiently complex to support life. This complexity is intimately tied to the variation in properties induced by the presence of different ions. These specific ion effects, widely known as Hofmeister effects, have been known for more than 100 years. They are ubiquitous throughout the chemical, biological and physical sciences. The origin of these effects and their relative strengths is still hotly debated. Here we reconsider the origins of specific ion effects through the lens of Coulomb interactions and establish a foundation for anion effects in aqueous and non-aqueous environments. We show that, for anions, the Hofmeister series can be explained and quantified by consideration of site-specific electrostatic interactions. This can simply be approximated by the radial charge density of the anion, which we have calculated for commonly reported ions. This broadly quantifies previously unpredictable specific ion effects, including those known to influence solution properties, virus activities and reaction rates. Furthermore, in non-aqueous solvents, the relative magnitude of the anion series is dependent on the Lewis acidity of the solvent, as measured by the Gutmann Acceptor Number. Analogous SIEs for cations bear limited correlation with their radial charge density, highlighting a fundamental asymmetry in the origins of specific ion effects for anions and cations, due to competing non-Coulombic phenomena.

Analysis of ions’ radial charge densities reveals they correlate with many specific ion effects, and provides a new basis to explain and quantify the 130-year-old Hofmeister series for anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号