首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(17):2844-2856
Enrofloxacin, a widely used fluoroquinolone antibiotic, may be a cause of bacterial drug resistance and is forbidden in poultry. Consequently, a sensitive and rapid method is required for its determination. Aptamers, which are more stable and easily synthesized than antibodies, may serve as alternatives in the development of methods for rapid detection. Six single-strand DNA aptamers binding to enrofloxacin were selected by in vitro selection. Aptamer number 17 showed the highest affinity for enrofloxacin with a dissociation constant of 188 nM and the highest guanine concentration (35%), which was predicted to be crucial for strong affinity of the aptamer to enrofloxacin, and successfully distinguished enrofloxacin from its structure analogs. Using aptamer number 17, a novel chemiluminescent enzyme immunoassay associating with biotin-streptavidin was developed that allowed the determination of enrofloxacin to 2.26 ng/mL. Due to its capability to determine enrofloxacin in bovine milk, this newly selected aptamer may find broad application in food and environmental monitoring.  相似文献   

2.
We report on a rapid method for the detection of Salmonella O8. It does not require an enrichment step but rather uses an aptamer as a probe that was selected by system evolution of ligands by exponential enrichment (SELEX) assay. Firstly, aptamer against Salmonella O8 was selected from a 78 bp random DNA library that was prepared in-vitro. The binding ability of the aptamers to target bacterium was examined by aptamer-linked immobilized sorbent assay. A high affinity aptamer was successfully selected from the initial random DNA pool, and its secondary structure was also investigated. Next, this high affinity aptamer B10 was used to recognize Salmonella O8 via fluorescence microscopy. The selected aptamer has a high specificity and high affinity against its target. We believe that the resulting fluorescence in-situ labeling assay is a potentially useful alternative in rapid screening and detection of foodborne pathogens.
Figure  相似文献   

3.
Aflatoxin B1 (AFB1) is one of the mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, and it causes contamination in foods and great risk to human health. Simple sensitive detection of AFB1 is important and demanded for food safety and quality control. Aptamers can specifically bind to targets with high affinity, showing advantages in affinity assays and biosensors. We reported an aptamer structure-switch for fluorescent detection of aflatoxin B1 (AFB1), using a label-free aptamer, a fluorescein (FAM)-labeled complementary strand (FDNA), and a quencher (BHQ1)-labeled complementary strand (QDNA). When AFB1 is absent, these three strands assemble into a duplex DNA structure through DNA hybridization, making FAM close to BHQ1, and fluorescence quenching occurs. In the presence of AFB1, the aptamer binds with AFB1, instead of hybridizing with QDNA. Thus, FAM is apart from BHQ1, and fluorescence increases with the addition of AFB1. This assay allowed detection of AFB1 with a detection limit of 61 pM AFB1 and a dynamic concentration range of 61 pM to 4 μM. This aptamer-based method enabled detection of AFB1 in complex sample matrix (e.g., beer and corn flour samples).  相似文献   

4.
Aptamers are DNA (or RNA) ligands selected from large libraries of random DNA sequences and capable of binding different classes of targets with high affinity and selectivity. Both the chances for the aptamer to be selected and the quality of the selected aptamer are largely dependent on the method of selection. Here we introduce selection of aptamers by nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). The new method has a number of advantages over conventional approaches. First, NECEEM-based selection has exceptionally high efficiency, which allows aptamer development with fewer rounds of selection. Second, NECEEM can be equally used for selecting aptamers and finding their binding parameters. Finally, due to its comprehensive kinetic capabilities, the new method can potentially facilitate selection of aptamers with predefined K(d), k(off), and k(on) of the aptamer-target interaction. In this proof-of-principle work, we describe the theoretical bases of the method and demonstrate its application to a one-step selection of DNA aptamers with nanomolar affinity for protein farnesyltransferase.  相似文献   

5.
Aptamers are DNA oligonucleotides capable of binding different classes of targets with high affinity and selectivity. They are particularly attractive as affinity probes in multiplexed quantitative analysis of proteins. Aptamers are typically selected from large libraries of random DNA sequences in a general approach termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX involves repetitive rounds of two processes: (i) partitioning of aptamers from non-aptamers by an affinity method and (ii) amplification of aptamers by the polymerase chain reaction (PCR). New partitioning methods, which are characterized by exceptionally high efficiency of partitioning, have been recently introduced. For the overall SELEX procedure to be efficient, the high efficiency of new partitioning methods has to be matched by high efficiency of PCR. Here we present the first detailed study of PCR amplification of random DNA libraries used in aptamer selection. With capillary electrophoresis as an analytical tool, we found fundamental differences between PCR amplification of homogeneous DNA templates and that of large libraries of random DNA sequences. Product formation for a homogeneous DNA template proceeds until primers are exhausted. For a random DNA library as a template, product accumulation stops when PCR primers are still in excess of the products. The products then rapidly convert to by-products and virtually disappear after only 5 additional cycles of PCR. The yield of the products decreases with the increasing length of DNA molecules in the library. We also proved that the initial number of DNA molecules in PCR mixture has no effect on the by-products formation. While the increase of the Taq DNA polymerase concentration in PCR mixture selectively increases the yield of PCR products. Our findings suggest that standard procedures of PCR amplification of homogeneous DNA samples cannot be transferred to PCR amplification of random DNA libraries: to ensure efficient SELEX, PCR has to be optimized for the amplification of random DNA libraries.  相似文献   

6.
Aptamers are a new class of molecular probes for protein recognition, detection, and inhibition. Multivalent aptamer-protein binding through aptamer assembly has been currently developed as an effective way to achieve higher protein affinity and selectivity. In this study, the specific interaction between bivalent aptamer Bi-8S and thrombin has been measured directly and quantitatively by atomic force microscopy to investigate the unbinding dynamics and dissociation energy landscape of the multivalent interaction. Bivalent aptamer Bi-8S contains thrombin's two aptamers, 15apt and 27apt, which are linked by eight spacer phosphoramidites. The results revealed the sequential dissociation of the two aptamers. Moreover, the dynamic force spectroscopy data revealed that the 27apt's binding to the thrombin remains largely unaffected by the eight-spacer phosphoramidites within Bi-8S. In contrast, the eight-spacer phosphoramidites stabilized the 15apt-thrombin binding.  相似文献   

7.
多肽在生命体的生理过程中发挥着重要作用,其生理功能一直是生物学、药理学和医学等领域的重要研究内容.核酸适配体是经体外筛选获得的单链DNA或RNA,能与靶标高亲和力、高特异性地结合,有"化学抗体"或"化学家的抗体"之称.以多肽为靶标筛选获得的核酸适配体主要有两大用途:一是基于其识别功能,作为亲和试剂来建立分析检测方法或开展生物成像研究;二是基于它们的生物学活性,作为拮抗剂在活体水平影响靶标多肽的正常功能,阻碍下游信号通路,从而对疾病进行治疗.本文总结了近年来以多肽为靶标筛选的核酸适配体在体内及体外的用途,并探讨了其在筛选、表征及应用中存在的问题,并对其未来的发展趋势进行了展望.  相似文献   

8.
设计合成了一种发夹型核酸适体(Aptamer), 结合聚合酶反应建立了蛋白质荧光分析新方法. 该核酸适体同时作为蛋白质配体和聚合反应模板, 与靶蛋白特异结合后, 其构象发生了变化, 启动聚合反应, 从而在未直接标记核酸适体的情况下, 通过监测聚合反应进程来检测蛋白质的浓度. 采用该方法检测凝血酶的线性范围为0.5~8 nmol/L, 检测下限为0.5 nmol/L, 为蛋白质检测提供了一种简便快速的非直接标记的荧光分析方法, 有望在蛋白质组学的研究中得到广泛的应用.  相似文献   

9.
Aptamers are starting to increase the reagents tool box to develop more sensitive and reliable methods for food allergens. In most of these assays, aptamers have to be modified for detection and/or immobilization purposes. To take full advantage of their affinity, which decisively influence the detectability, these modifications must be faced rationally. In this work, a recently developed aptamer for an immunotoxic peptide of gliadin associated to celiac disease is used in different configurations and modified with various markers and anchored groups to evaluate the influence of such modifications on the real affinity. The interaction in solution with the peptide is strong for a relatively small molecule (Kd = 45 ± 10 nM, 17 °C) and slightly stronger than that for the immobilized intact protein due to a cooperative binding effect. Comparatively, while only minor differences were found when the peptide or the aptamer were immobilized, labeling with a biotin resulted preferable over fluorescein (Kd = 102 ± 11 vs 208 ± 54 nM, 25 °C). These findings are of prime importance for the design of an aptamer-based analytical method for gluten quantification.  相似文献   

10.
E. coli O157:H7 is a pathogenic bacterium producing verotoxins that could lead to serious complications such as hemolytic uremia syndrome. Fast detection of such pathogens is important. For rapid detection, aptamers are quickly gaining traction as alternative biorecognition molecules besides conventional antibodies. Several DNA aptamers have been selected for E. coli O157:H7. Nonetheless, there has not been a comparative study of the binding characteristics of these aptamers. In this work, we present a comprehensive analysis of binding characteristics including binding affinity (Kd) and binding capacity (Bmax) of DNA-based aptamers for E. coli O157:H7 using qPCR. Our results show that aptamer E18R has the highest binding capacity to E. coli 157:H7 and the highest specificity over non-pathogenic E. coli strains K12 and DH5α. Our study also finds that the common biotin-tag modification at 5′ end typically changes the binding capacity significantly. For most of the selected aptamers, the binding capacity after a biotin-tag modification decreases. There exists a discrepancy in the binding capability between the selected aptamer and the aptamer used for detection. Our study also shows that a lower concentration of Mg2+ ions in the binding buffer leads to a decrease in the binding capacity of E17F and E18R, while it does not affect the binding capacity of S1 and EcoR1.  相似文献   

11.
Aptamers are synthetic nucleic acids with great potential as analytical tools. However, the length of selected aptamers (typically 60–100 bases) can affect affinity, due to the presence of bases not required for interaction with the target, and therefore, the truncation of these selected sequences and identification of binding domains is a critical step to produce potent aptamers with higher affinities and specificities and lowered production costs. In this paper we report the truncation of an aptamer that specifically binds to β-conglutin (Lup an 1), an anaphylactic allergen. Through comparing the predicted secondary structures of the aptamers, a hairpin structure with a G-rich loop was determined to be the binding motif. The highest affinity was observed with a truncation resulting in an 11-mer sequence that had an apparent equilibrium dissociation constant (K D) of 1.7?×?10?9 M. This 11-mer sequence was demonstrated to have high specificity for β-conglutin and showed no cross-reactivity to other lupin conglutins (α-, δ-, γ-conglutins) and closely related proteins such as gliadin. Finally, the structure of the truncated 11-mer aptamer was preliminarily elucidated, and the GQRS Mapper strongly predicted the presence of a G-quadruplex, which was subsequently corroborated using one-dimensional NMR, thus highlighting the stability of the truncated structure.  相似文献   

12.
Chloramphenicol (CAP) has been widely used to treat bacterial infections in livestock and aquatic animals. To reduce the risk of CAP residues, an efficient technology to rapidly detect CAP residues in animal-sourced food is expressly needed. In this study, magnetic bead-based systematic evolution of ligands by exponential enrichment (Mag-SELEX) strategy was performed to select and identify CAP-specific single-stranded DNA (ssDNA) aptamers from a random oligonucleotide library. After nine rounds of selection, five potential ssDNA aptamers were selected. Low homology indicated that they might belong to different families. To identify an aptamer with the highest affinity for CAP, the dissociation constant (K d) values of these selected aptamers were determined. The lowest K d values of two potential aptamers (i.e., No. 4 and No. 5) were, respectively, 0.10162 ± 0.0111 and 0.03224 ± 0.00819 μM, which were much lower than previously reported lowest K d value (i.e., 0.766 μM) of CAP aptamer. Moreover, compared with No. 4, aptamer No. 5 had higher binding rate, which is quite different among those with CAP and with CAP’s structural analogs (i.e., thiamphenicol (TAP) and florfenicol (FF)). These results indicated that the potential aptamer No. 5 with highest specificity and affinity for CAP would be an ideal aptamer for future detection of residual CAP in animal-sourced food.  相似文献   

13.
陈尔凝  赵新颖  屈锋 《色谱》2016,34(4):389-396
核酸适配体(aptamer)是通过指数富集配体系统进化技术(SELEX)筛选的能够以高亲和力和高特异性识别靶标分子或细胞的核糖核酸(RNA)和单链脱氧核糖核酸(ssDNA)。作为化学抗体,核酸适配体的制备和合成比抗体的成本更低。核酸适配体的靶标范围极其广泛,包括小分子、生物大分子、细菌和细胞等。针对细菌靶标筛选的适配体,目前主要应用于食品、医药和环境中的细菌检测。细菌的核酸适配体筛选可以通过离心法将菌体-适配体复合物与游离的适配体分离,并通过荧光成像、荧光光谱分析、流式细胞仪分选、DNA捕获元件、酶联适配体分析等方法表征适配体与靶标的相互作用。筛选出的适配体可结合生物、化学检测方法用于细菌检测。本文介绍了细菌适配体的筛选和表征方法以及基于适配体的检测方法的最新进展,分析了不同检测方法的利弊,并列出了2011~2015年筛选的细菌的核酸适配体。  相似文献   

14.
The detection and quantification of disease-related proteins play critical roles in clinical practice and diagnostic assays. We present an affinity probe capillary electrophoresis/laser-induced fluorescence polarization (APCE/LIFP) assay for detection of human thrombin using a specific aptamer as probe. In the APCE/LIFP assay, the mobility and fluorescence polarization of complex are measured simultaneously during CE analysis. The affinity complex of human thrombin can be well separated from unbound aptamer on CE and clearly identified on the basis of its fluorescence polarization and migration. Because of the binding favorable G-quartet conformation potentially involved in the specific aptamer, it was assumed that monovalent and bivalent cations promoting the formation of a stable G quadruplex conformation in the aptamer may enhance the binding of the aptamer and thrombin. Therefore, we investigated the effects of various metal cations on the binding of human thrombin and the aptamer. Our results show that cations like K+ and Mg2+ could not stabilize the affinity complex. Without the use of typical cations, a highly sensitive assay of human thrombin was developed with the corresponding detection limits of 4.38 × 10−19 and 2.94 × 10−19 mol in mass for standard solution and human serum, respectively.  相似文献   

15.
Deng QP  Tie C  Zhou YL  Zhang XX 《Electrophoresis》2012,33(9-10):1465-1470
Aptamers, which are nucleic acid oligonucleotides that can bind targets with high affinity and specificity, have been widely applied as affinity probes in capillary electrophoresis (CE). Due to relative weak interaction between aptamers and small molecules, the application of aptamer-based CE is still limited in certain compounds. A new strategy that is based on the aptamer structure-switch concept was designed for small molecule detection by a novel CE method. A carboxyfluorescein (fluorescein amidite, FAM) label DNA aptamer was first incubated with partial complementary strand (CS), and then the free aptamer and the aptamer-CS duplex were well separated and determined by metal cation mediated CE/laser-induced fluorescence. When the target was introduced into the incubated sample, the hybridized form was destabilized, resulting in the changes of the fluorescence intensities of the free aptamer and the aptamer-CS duplex. The length of CS was investigated and 12 mer CS showed the best sensitivity for the detection of cocaine. The presented CE-LIF method, which combines the separation power of CE with the specificity of interactions occurring between target, aptamer, and CS, could be a universal detection strategy for other aptamer-specified small molecules.  相似文献   

16.
刘品多  屈锋 《色谱》2016,34(4):382-388
核酸适配体(aptamer)是从人工合成的随机单链DNA(ssDNA)或RNA文库中筛选得到的,能够高亲和力、高特异性地与靶标结合的ssDNA或RNA。核酸适配体的靶标范围广,可包括小分子、蛋白质、细胞、微生物等多种靶标。其中以细胞为靶标的适配体在生物感应、分子成像、医学诊断、药物传输和疾病治疗等领域有很大的应用潜能。但全细胞的核酸适配体筛选过程复杂,筛选难度大,筛选的适配体性能不佳是导致目前可用的适配体非常有限的主要原因。由于细胞表面蛋白质在提取纯化过程中分子结构和形态会发生改变,故以膜表面蛋白质为靶标筛选的适配体很难应用于识别整体细胞。以全细胞为靶标的核酸适配体筛选则不需要准确了解细胞表面的分子结构,筛选过程中可保持细胞的天然状态,以全细胞为靶标筛选出的核酸适配体有望直接用于全细胞识别。本文总结了2008~2015年全细胞的核酸适配体筛选的研究进展,介绍了靶细胞的分类、核酸库的设计、筛选条件和方法以及核酸适配体的亲和力表征方法等。并列出全细胞靶标的核酸适配体序列。  相似文献   

17.
核酸适配体是指通过体外筛选技术从核酸文库中筛选出来,能够高特异性、高亲和力识别靶标物的寡核苷酸序列,具有靶标类型广泛、合成简单、相对分子质量小、化学稳定性高、易于进行生物化学修饰等优点。 核酸适配体能够通过折叠成特定的二维或三维构型与靶标物特异性结合,加上合适的信号转导机制,为重要靶标物的研究提供理想的分子识别与分子检测探针。 荧光检测技术具有高灵敏、高分辨率、易于实现多元分析等优点。 将核酸适配体的分子识别特性与荧光优异的光学检测性能相结合,在生命科学研究领域有着广泛的应用空间。 本文主要综述了核酸适配体荧光探针常见的分子设计和信号响应方式,及其在细胞成像、亚细胞成像中的应用研究,并对核酸适配体探针目前面临的一些挑战进行了讨论,最后对其未来的发展方向进行了展望。  相似文献   

18.
杨歌  魏强  赵新颖  屈锋 《色谱》2016,34(4):370-381
核酸适配体是通过指数富集系统配体进化(SELEX)筛选获得的,与靶标具有高亲和力和特异性结合的单链DNA或RNA。蛋白质是生命进程中的关键功能分子。近年来,以蛋白质为靶标的适配体筛选在蛋白质相关的基础及应用研究领域受到广泛关注。核酸适配体应用性能的优劣取决于其亲和力、特异性与稳定性。目前,适配体筛选方法的优化主要是提高筛选效率、提升适配体性能及降低筛选成本。适配体主要筛选步骤包括复合物分离、核酸库优化、次级库的富集、适配体序列分析以及亲和力表征等。迄今为止,以蛋白质-核酸复合物的分离为核心步骤的适配体筛选方法有20余种。本文归纳总结了2005年以来以蛋白质为靶标的适配体筛选技术,讨论了各方法的缺陷与局限。介绍了核酸库的设计优化方法、适配体的序列特征,以及常用的亲和力表征方法。  相似文献   

19.
We explored a fluorescent strategy for sensing ochratoxin A (OTA) by using a single fluorophore-labeled aptamer for detection of OTA. This method relied on the change of the fluorescence intensity of the labeled dye induced by the specific binding of the fluorescent aptamer to OTA. Different fluorescein labeling sites of aptamers were screened, including the internal thymine bases, 3′-end, and 5′-end of the aptamer, and the effect of the labeling on the aptamer affinity was investigated. Some fluorophore-labeled aptamers showed a signal-on or signal-off response. With the fluorescent aptamer switch, simple, rapid, and selective sensing of OTA at nanomolar concentrations was achieved. OTA spiked in diluted red wine could be detected, showing the feasibility of the fluorescent aptamer for a complex matrix. This method shows potential for designing aptamer sensors for other targets.
Figure
A simple fluorescent approach for OTA sensing is achieved by using single fluorophore-labeled aptamer. A fluorophore is attached on one site of the aptamer. The affinity binding of OTA induces the alteration of fluorescence properties of the labeled fluorophore as the consequence of the conformation change of the aptamer. OTA can be detected by measuring the change of fluorescence signals of the labeled dye  相似文献   

20.
This study reports a novel aptamer selection method based on microscale electrophoretic filtration. Aptamers are versatile materials that recognize specific targets and are attractive for their applications in biosensors, diagnosis, and therapy. However, their practical applications remain scarce due to issues with conventional selection methods, such as complicated operations, low-efficiency separation, and expensive apparatus. To overcome these drawbacks, a selection method based on microscale electrophoretic filtration using a capillary partially filled with hydrogel was developed. The electrophoretic filtration of model target proteins (immunoglobulin E (IgE)) using hydrogel, the electrokinetic injection of DNAs to interact with the trapped proteins, the elimination of DNAs with weak interactions, and the selective acquisition of aptamer candidates with strong interactions were successfully demonstrated, revealing the validity of the proposed concept. Two aptamer candidates for IgE were obtained after three selection cycles, and their affinity for the target was confirmed to be less than 1 nM based on their dissociation constant (KD) values. Therefore, the proposed method allows for the selection of aptamers with simple operations, highly effective separation based on electrophoresis and filtration, and a relatively cheap apparatus with disposable devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号