首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
β‐Lactam antibiotics are generally perceived as one of the greatest inventions of the 20th century, and these small molecular compounds have saved millions of lives. However, upon clinical application of antibiotics, the β‐lactamase secreted by pathogenic bacteria can lead to the gradual development of drug resistance. β‐Lactamase is a hydrolase that can efficiently hydrolyze and destroy β‐lactam antibiotics. It develops and spreads rapidly in pathogens, and the drug‐resistant bacteria pose a severe threat to human health and development. As a result, detecting and inhibiting the activities of β‐lactamase are of great value for the rational use of antibiotics and the treatment of infectious diseases. At present, many specific detection methods and inhibitors of β‐lactamase have been developed and applied in clinical practice. In this Minireview, we describe the resistance mechanism of bacteria producing β‐lactamase and further summarize the fluorogenic probes, inhibitors of β‐lactamase, and their applications in the treatment of infectious diseases. It may be valuable to design fluorogenic probes with improved selectivity, sensitivity, and effectiveness to further identify the inhibitors for β‐lactamases and eventually overcome bacterial resistance.  相似文献   

2.
Despite sterilization and aseptic procedures, bacterial infection remains a major impediment to the utility of medical implants including catheters, artificial prosthetics, and subcutaneous sensors. Indwelling devices are responsible for over half of all nosocomial infections, with an estimate of 1 million cases per year (2004) in the United States alone. Device-associated infections are the result of bacterial adhesion and subsequent biofilm formation at the implantation site. Although useful for relieving associated systemic infections, conventional antibiotic therapies remain ineffective against biofilms. Unfortunately, the lack of a suitable treatment often leaves extraction of the contaminated device as the only viable option for eliminating the biofilm. Much research has focused on developing polymers that resist bacterial adhesion for use as medical device coatings. This tutorial review focuses on coatings that release antimicrobial agents (i.e., active release strategies) for reducing the incidence of implant-associated infection. Following a brief introduction to bacteria, biofilms, and infection, the development and study of coatings that slowly release antimicrobial agents such as antibiotics, silver ions, antibodies, and nitric oxide are covered. The success and limitations of these strategies are highlighted.  相似文献   

3.
Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis patients, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: (1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, (2) chemical library screening for compounds with anti-biofilm activity, and (3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity.  相似文献   

4.
The introduction of effective antibacterial therapies for infectious diseases in the mid‐20th century completely revolutionized clinical practices and helped to facilitate the development of modern medicine. Many potentially life‐threatening conditions became easily curable, greatly reducing the incidence of death or disability resulting from bacterial infections. This overwhelming historical success makes it very difficult to imagine life without effective antibacterials; however, the inexorable rise of antibiotic resistance has made this a very real and disturbing possibility for some infections. The ruthless selection for resistant bacteria, coupled with insufficient investment in antibacterial research, has led to a steady decline in the efficacy of existing therapies and a paucity of novel structural classes with which to replace them, or complement their use. This situation has resulted in a very pressing need for the discovery of novel antibiotics and treatment strategies, the development of which is likely to be a key challenge to 21st century medicinal chemistry.  相似文献   

5.
The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.  相似文献   

6.
由致病菌或条件致病菌侵入机体繁殖而产生的毒素和其它代谢产物所引起的感染性疾病是目前全球范围内的主要死亡原因之一. 感染性疾病的早期诊断是对其进行有效治疗与控制的重要途径. 分子影像技术的快速发展给体内细菌感染的评估带来了前所未有的变化和机遇. 本文综合评述了计算机断层扫描、 正电子发射断层扫描、 超声成像、 磁共振成像、 荧光成像及光声成像等成像方式在细菌感染体内成像中的研究进展、 不足和发展方向等, 以期为活体细菌感染检测方法的发展提供参考.  相似文献   

7.
Rapid detection of antibiotic resistances of clinical bacterial strains would allow an early selective antibiotic therapy and a faster intervention and implementation of infection control measurements. In clinical practice, however, conventional antibiotic susceptibility tests of bacteria often need 24 h until the results are obtained. The metabolic heat production of bacteria is an excellent possibility to record their physiological activities and could therefore be used for a rapid discrimination of bacterial strains which are resistant or non-resistant to antibiotics and also to lytic bacteriophages, respectively. Unfortunately, conventional calorimeters suffer from need of comparably large volumes of bacterial suspensions are characterised by slow operation and high costs which restrict their application in clinical laboratories. The present paper demonstrates that a new type of calorimeters developed on silicon-chip technology enables the detection of antibiotic resistances on a minute-timescale. For this reasons, a prototype chip calorimeter was used which sensitivity is 20 nW related to the heat production of about 104 bacteria. For a clear discrimination of antibiotic resistance about 105 bacteria are required. The antibiotic resistances and susceptibilities of different strains of Staphylococcus aureus to cefoxitin and the sensitivities of S. aureus DSM 18421 and E. coli DSM 498 to a mixture of two bacteriophages were studied. Comparing the heat productions of cultures incubated with antibiotics or bacteriophages to those without these antibacterial preparations enabled a clear discrimination of resistant and non-resistant strains already after totally 2 h.  相似文献   

8.
The accelerated growth of aquaculture has resulted in a series of harmful effects to human health. The widespread and unrestricted use of antibiotics in this industry, to prevent bacterial infections, leads to remaining amounts in the aquatic environment. This has resulted in the emergence of antibiotic-resistant bacteria in aquaculture environments, in the increase in antibiotic resistance in fish pathogens as well as in the transfer of these resistance determinants to human pathogens. Moreover, the use of large amounts of antibiotics may lead to the presence of residual antibiotics in fish tissue and fish products. Fluoroquinolones, tetracyclines, penicillins, sulphonamides and other antibiotics, exhibiting activity against both Gram-positive and Gram-negative bacteria, are widely used for the treatment and prevention of diseases in fish. An extended and comprehensive review on the recent analytical methodologies concerning antibiotic residues in fish reported in the literature is provided in the present article. Emphasis is given on sample preparation regarding isolation and purification, chromatographic conditions and method validation according to legislation. Results of published assays are comparatively presented and criticised.  相似文献   

9.
Indiscriminate use of antibiotics has led to a rapid increase of antibiotic resistance among microbes which has increased the need to develop novel antimicrobial agents to fight various infectious diseases. Peptide antibiotics signify a novel class of therapeutic agents and have been isolated from a wide variety of multi-cellular organisms. Peptide antibiotics have shown broad-spectrum antimicrobial activity and they not only kill different bacteria, but also kill various fungi, parasites, protozoans and cancerous cells. Peptides bear several properties that make them particularly attractive such as their small size, rapid activity and a low chance for development of resistance. Because of these distinct properties, the focus for research on antimicrobial peptides has increased tremendously in the recent years. Despite their potential, only selected cationic antimicrobial peptides have been able to enter in clinical trials. Therefore, there is a pressing need to develop new approaches to identify novel antimicrobial peptide therapeutics replacing conventional antibiotics. Recent findings strongly suggest that one can design a new generation of antimicrobials peptides with a wide range of systemic and topical applications against bacterial infections. In this review, we focus on the identification and design of novel antimicrobial peptides for therapeutic applications based on different approaches and strategies. This review also highlights some recent advances in the study of the molecular basis of anti-microbial activity in these peptides, their current pharmacological and clinical development and future directions and applications.  相似文献   

10.
致病菌往往通过凝集素-糖特异性识别来实现对宿主细胞的粘附,进而感染宿主组织,引起病变。因此,研究致病菌与糖的特异性识别有利于进一步了解感染性疾病的致病机制,为致病菌的特异性检测和感染性疾病的治疗提供新的策略。该文总结了致病菌-糖特异性识别的相关机制机理;介绍了目前主要的研究方法和技术,特别评述了荧光光谱、表面等离子体共振、电化学阻抗谱及石英晶体微天平等技术在该研究中的应用现状,并对这4种技术与微流控芯片平台的结合进行了探讨;针对致病菌检测特异性差、耐药性严重等难题,重点综述了致病菌-糖的特异性识别在细菌分离、富集、检测、鉴别、生物膜抑制及抗菌糖类药物筛选方面的应用。最后对致病菌-糖特异性识别基础和应用研究进行了展望。  相似文献   

11.
Antimicrobial drugs are key tools to prevent and treat bacterial infections. Despite the early success of antibiotics, the current treatment of bacterial infections faces serious challenges due to the emergence and spread of resistant bacteria. Moreover, the decline of research and private investment in new antibiotics further aggravates this antibiotic crisis era. Overcoming the complexity of antimicrobial resistance must go beyond the search of new classes of antibiotics and include the development of alternative solutions. The evolution of nanomedicine has allowed the design of new drug delivery systems with improved therapeutic index for the incorporated compounds. One of the most promising strategies is their association to lipid-based delivery (nano)systems. A drug’s encapsulation in liposomes has been demonstrated to increase its accumulation at the infection site, minimizing drug toxicity and protecting the antibiotic from peripheral degradation. In addition, liposomes may be designed to fuse with bacterial cells, holding the potential to overcome antimicrobial resistance and biofilm formation and constituting a promising solution for the treatment of potential fatal multidrug-resistant bacterial infections, such as methicillin resistant Staphylococcus aureus. In this review, we aim to address the applicability of antibiotic encapsulated liposomes as an effective therapeutic strategy for bacterial infections.  相似文献   

12.
Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host’s immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.  相似文献   

13.
14.
Covering: up to November 2011Infections caused by multidrug-resistant bacteria are an increasing problem due to the emergence and propagation of microbial drug resistance and the lack of development of new antimicrobials. Traditional methods of antibiotic discovery have failed to keep pace with the evolution of resistance. Therefore, new strategies to control bacterial infections are highly desirable. Plant secondary metabolites (phytochemicals) have already demonstrated their potential as antibacterials when used alone and as synergists or potentiators of other antibacterial agents. The use of phytochemical products and plant extracts as resistance-modifying agents (RMAs) represents an increasingly active research topic. Phytochemicals frequently act through different mechanisms than conventional antibiotics and could, therefore be of use in the treatment of resistant bacteria. The therapeutic utility of these products, however, remains to be clinically proven. The aim of this article is to review the advances in in vitro and in vivo studies on the potential chemotherapeutic value of phytochemical products and plant extracts as RMAs to restore the efficacy of antibiotics against resistant pathogenic bacteria. The mode of action of RMAs on the potentiation of antibiotics is also described.  相似文献   

15.
Resistance to glycopeptide antibiotics, the drugs of choice for life‐threatening bacterial infections, is on the rise. In order to counter the threat of glycopeptide‐resistant bacteria, we report development of a new class of semi‐synthetic glycopeptide antibiotics, which not only target the bacterial membrane but also display enhanced inhibition of cell‐wall biosynthesis through increased binding affinity to their target peptides. The combined effect of these two mechanisms resulted in improved in vitro activity of two to three orders of magnitude over vancomycin and no propensity to trigger drug resistance in bacteria. In murine model of kidney infection, the optimized compound was able to bring bacterial burden down by about 6 logs at 12 mg kg?1 with no observed toxicity. The results furnished in this report emphasize the potential of this class of compounds as future antibiotics for drug‐resistant Gram‐positive infections.  相似文献   

16.
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.  相似文献   

17.
Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity.  相似文献   

18.
Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.  相似文献   

19.
Bacterial resistance to antibiotics poses a great clinical challenge in fighting serious infectious diseases due to complicated resistant mechanisms and time‐consuming testing methods. Chemical reaction‐directed covalent labeling of resistance‐associated bacterial proteins in the context of a complicated environment offers great opportunity for the in‐depth understanding of the biological basis conferring drug resistance, and for the development of effective diagnostic approaches. In the present study, three fluorogenic reagents LRBL1–3 for resistant bacteria labeling have been designed and prepared on the basis of fluorescence resonance energy transfer (FRET). The hydrolyzed probes could act as reactive electrophiles to attach the enzyme, β‐lactamase, and thus facilitated the covalent labeling of drug resistant bacterial strains. SDS electrophoresis and MALDI‐TOF mass spectrometry characterization confirmed that these probes were sensitive and specific to β‐lactamase and could therefore serve for covalent and localized fluorescence labeling of the enzyme structure. Moreover, this β‐lactamase‐induced covalent labeling provides quantitative analysis of the resistant bacterial population (down to 5 %) by high resolution flow cytometry, and allows single‐cell detection and direct observation of bacterial enzyme activity in resistant pathogenic species. This approach offers great promise for clinical investigations and microbiological research.  相似文献   

20.
Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human‐pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last‐resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled “Combat drug resistance: no action today means no cure tomorrow” triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号