首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cultivation of one actinobacteria strain, Herbidospora yilanensis, was isolated from sediment samples collected from Yilan County City in Taiwan, resulting in the isolation of five previously undescribed compounds: herbidosporayilanensins A–E (1–5), and four compounds isolated from nature for the first time: herbidosporayilanensins F–I (6–9). Their structures were elucidated by spectroscopic analyses, including 1D- and 2D-NMR experiments with those of known analogues, and on the basis of HR-EI-MS mass spectrometry, their antimycobacterial activities were also evaluated.  相似文献   

2.
Seven undescribed scalarane sesterterpenoids, nambiscalaranes B–H (1–7), together with two known compounds, nambiscalarane (8) and aurisin A (9) were isolated from the cultured mycelium of the luminescent mushroom Neonothopanus nambi. Their structures were elucidated by thorough analysis of their 1D and 2D NMR spectroscopic data. The absolute configurations of 1–8 were determined by electronic circular dichroism (ECD) calculations and optical rotation measurements. The isolated sesterterpenoids were evaluated against A549, HT29, HeLa, and HCT-116 cancer cell lines, and against five bacterial strains. Compounds 3, 5, and 7 showed strong cytotoxicity against HCT-116 cell line, with IC50 values ranging from 13.41 to 16.53 µM, and showed no cytotoxicity towards Vero cells. Moreover, compound 8 inhibited the growth of Bacillus subtilis with a MIC value of 8 µg/mL, which was equivalent to the MIC value of the standard kanamycin.  相似文献   

3.
Five new dimer compounds, namely Taiwaniacryptodimers A–E (1–5), were isolated from the methanol extract of the roots of Taiwania cryptomerioides. Their structures were established by mean of spectroscopic analysis and comparison of NMR data with those of known analogues. Their antifungal activities were also evaluated. Our results indicated that metabolites 1, 2, 4, and 5 displayed moderate antifungal activities against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae.  相似文献   

4.
The fungus strain DZ-3 was isolated from twigs of the well-known medicinal plant Eucommia ulmoides Oliver and identified as Aspergillus flavipes. Two new alkaloids, named asperflaloids A and B (1 and 2), together with 10 known compounds (3–12) were obtained from the EtOAc extract of the strain. Interestingly, the alkaloids 1–4 with different frameworks are characterized by the presence of the same anthranilic acid residue. The structures were established by detailed analyses of the spectroscopic data. The absolute configuration of asperflaloids A and B was resolved by quantum chemistry calculation. All compounds were screened for their inhibitions against α-glucosidase and the antioxidant capacities. The results were that compound 3 had an IC50 value of 750.8 μM toward α-glucosidase, and the phenol compounds 7 and 8 exhibited potent antioxidant capacities with IC50 values 14.4 and 27.1 μM respectively.  相似文献   

5.
Eight new inositol derivatives, solsurinositols A–H (1–8), were isolated from the 70% EtOH extract of the leaves of Solanum capsicoides Allioni. Careful isolation by silica gel column chromatography followed by preparative high-performance liquid chromatography (HPLC) allowed us to obtain analytically pure compounds 1–8. They shared the same relative stereochemistry on the ring but have different acyl groups attached to various hydroxyl groups. This was the first time that inositol derivatives have been isolated from this plant. The chemical structures of compounds 1–8 were characterized by extensive 1D nuclear magnetic resonance (NMR) and 2D NMR and mass analyses. Meanwhile, the in vitro anti-inflammatory activity of all compounds was determined using lipopolysaccharide (LPS)-induced BV2 microglia, and among the isolates, compounds 5 (IC50 = 11.21 ± 0.14 µM) and 7 (IC50 = 14.5 ± 1.22 µM) were shown to have potential anti-inflammatory activity.  相似文献   

6.
In the present work, an effort has been made to utilize Phyllanthus emblica (PE) fruit stone as a potential biomaterial for the sustainable remediation of noxious heavy metals viz. Pb(II) and Cd(II) from the aqueous solution using adsorption methodology. Further, to elucidate the adsorption potential of Phyllanthus emblica fruit stone (PEFS), effective parameters, such as contact time, initial metal concentration, temperature, etc., were investigated and optimized using a simple batch adsorption method. It was observed that 80% removal for both the heavy metal ions was carried out within 60 min of contact time at an optimized pH 6. Moreover, the thermodynamic parameters results indicated that the adsorption process in the present study was endothermic, spontaneous, and feasible in nature. The positive value of entropy further reflects the high adsorbent–adsorbate interaction. Thus, based on the findings obtained, it can be concluded that the biosorbent may be considered a potential material for the remediation of these noxious impurities and can further be applied or extrapolated to other impurities.  相似文献   

7.
Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects.  相似文献   

8.
The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0–40‰, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‰; however, quite high production (>390 IU/L) was still predicted at pH 4.5–8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0–120‰) and pHs (2.0–13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).  相似文献   

9.
The genus Cimicifuga is one of the smallest genera in the family Ranunculaceae. Cimicifugae Rhizoma originated from rhizomes of Cimicifuga simplex, and C. dahurica, C. racemosa, C. foetida, and C. heracleifolia have been used as anti-inflammatory, analgesic and antipyretic remedies in Chinese traditional medicine. Inflammation is related to many diseases. Cimicifuga taiwanensis was often used in folk therapy in Taiwan for inflammation. Phytochemical investigation and chromatographic separation of extracts from the roots of Cimicifuga taiwanensis has led to the isolation of six new compounds: cimicitaiwanins A–F (1–6, respectively). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic data analysis (1D- and 2D-NMR, MS, and UV) and comparison with the literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 3–6 exhibited potent anti-NO production activity, with IC50 values ranging from 6.54 to 24.58 μM, respectively, compared with that of quercetin, an iNOS inhibitor with an IC50 value of 34.58 μM. This is the first report on metabolite from the endemic Taiwanese plant-C. taiwanensis.  相似文献   

10.
Phytochemical investigation and chromatographic separation of extracts from one new actinobacteria strain Amycolatopsis taiwanensis that was isolated from soil of Yilan township, in the north of Taiwan, led to the isolation of nine new compounds, amycolataiwanensins A–I (1–9, resp.), and one new natural product, namely amycolataiwanensin J (10). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic-data analysis (1D- and 2D-NMR, MS, and UV) and comparison with literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 3, 5, 7 and 8 exhibited potent anti-NO production activity, with IC50 values of 17.52, 12.31, 17.81 and 13.32 μM, respectively, compared to that of quercetin, an iNOS inhibitor with an IC50 value of 35.94 μM. This is the first report on indole metabolite from the genus Amycolatopsis.  相似文献   

11.
This work proposes a facile methodology for producing porous biochar material (ABC) from açaí kernel residue, produced by chemical impregnation with ZnCl2 (1:1) and pyrolysis at 650.0 °C. The characterization was achieved using several techniques, and the biochar material was employed as an adsorbent to remove catechol. The results show that ABC carbon has hydrophilic properties. The specific surface area and total pore volume are 1315 m2·g−1 and 0.7038 cm3·g−1, respectively. FTIR revealed the presence of oxygenated groups, which can influence catechol adsorption. The TGA/DTG indicated that the sample is thermally stable even at 580 °C. Adsorption studies showed that equilibrium was achieved in <50 min and the Avrami kinetic model best fits the experimental data, while Freundlich was observed to be the best-fitted isotherm model. Catechol adsorption on ABC biochar is governed by van der Waals forces and microporous and mesoporous filling mechanisms. The Qmax is 339.5 mg·g−1 (40 °C) with 98.36% removal of simulated effluent, showing that açaí kernel is excellent biomass to prepare good biochar that can be efficiently used to treat real industrial effluents.  相似文献   

12.
The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2–5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds—isolated for the first time from A. ochraceopetaliformis—were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.  相似文献   

13.
Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.  相似文献   

14.
Due to the high consumption of fat-rich processed foods, efforts are being done to reduce their saturated fat (SFA) contents and replace it with polyunsaturated fatty acids (PUFA), creating a necessity to find alternative PUFA sources. Macroalgae, being a promising natural source of healthy food, may be such an alternative. The fatty acid (FA) profile of Fucus spiralis, Bifurcaria bifurcata, Ulva lactuca, and Saccorhiza polyschides were determined through direct transesterification and their seasonal variation was studied. F. spiralis showed the highest FA content overall, B. bifurcata presented the higher PUFA amounts, and U. lactuca and S. polyschides the higher SFA. The production of FA was shown to be influenced by the seasons. Spring and summer seemed to induce the FA production in F. spiralis and B. bifurcata while in U. lactuca the same was verified in winter. U. lactuca presented a ω6/ω3 ratio between 0.59 and 1.38 while B. bifurcata presented a ratio around 1.31. The study on the seasonal variations of the macroalgal FA profile can be helpful to understand the best season to yield FA of interest, such as ALA, EPA, and DHA. It may also provide valuable information on the best culturing conditions for the production of desired FAs.  相似文献   

15.
Diabetes mellitus is a common global health problem. Among the complications that are frequently associated with DM are the alternation of sexual function and fertility, especially in young men. This study aimed to assess the efficacy of nanoparticles of Costus speciosus (C. speciosus) in preserving the prostatic structure of diabetic rats and to explore the mechanism behind this effect. A model of DM was induced in male albino rats by a single intraperitoneally injection of streptozotocin (STZ, 60 mg/kg body weight). Five groups (n = 10 each) of rats were included in this study: the control, C. speciosus gold nanoparticles-treated (150 mg/kg body weight through gastric intubation for 30 days), untreated diabetic, metformin-treated diabetic (500 mg/kg/day gastric intubation for 30 days) and the C. speciosus-treated diabetic group. The blood glucose, insulin and testosterone levels as well as oxidants/antioxidants status were assessed in the serum. Gene expression of proinflammatory cytokines TNF-α, IL1β and IL-6 were assessed in the prostate homogenate. At the end of the experiment, the rats were sacrificed and the prostate was dissected out and prepared for histopathological and immunohistochemistry study using Ki67 and Bcl-2. C. Speciosus nanoparticles significantly decreased (p = 0.03) the blood glucose level while significantly increasing insulin (p = 0.01) and testosterone (p = 0.04) levels compared to the untreated diabetic rats. Oxidants/antioxidants status was markedly improved after administration of C. speciosus. Prostatic expression of the mRNA of pro-inflammatory cytokines IL-6, IL1β and TNF-α was down-regulated in metformin- and C. speciosus-treated rats. The histological structure of the ventral prostate was preserved in metformin- and C. speciosus-treated diabetic rats with a significantly thicker epithelial cell layer and significant increase immunoexpression in Bcl-2 and Ki67. In conclusion, the protective effect induced by C. speciosus nanoparticles on the prostate of diabetic rats might be directly mediated through the down-regulation of inflammatory cytokines and the up-regulation of antioxidant activity and indirectly mediated through the anti-hyperglycemic effect through enhancing insulin secretion.  相似文献   

16.
Despite ongoing vaccination programs against COVID-19 around the world, cases of infection are still rising with new variants. This infers that an effective antiviral drug against COVID-19 is crucial along with vaccinations to decrease cases. A potential target of such antivirals could be the membrane components of the causative pathogen, SARS-CoV-2, for instance spike (S) protein. In our research, we have deployed in vitro screening of crude extracts of seven ethnomedicinal plants against the spike receptor-binding domain (S1-RBD) of SARS-CoV-2 using an enzyme-linked immunosorbent assay (ELISA). Following encouraging in vitro results for Tinospora cordifolia, in silico studies were conducted for the 14 reported antiviral secondary metabolites isolated from T. cordifolia—a species widely cultivated and used as an antiviral drug in the Himalayan country of Nepal—using Genetic Optimization for Ligand Docking (GOLD), Molecular Operating Environment (MOE), and BIOVIA Discovery Studio. The molecular docking and binding energy study revealed that cordifolioside-A had a higher binding affinity and was the most effective in binding to the competitive site of the spike protein. Molecular dynamics (MD) simulation studies using GROMACS 5.4.1 further assayed the interaction between the potent compound and binding sites of the spike protein. It revealed that cordifolioside-A demonstrated better binding affinity and stability, and resulted in a conformational change in S1-RBD, hence hindering the activities of the protein. In addition, ADMET analysis of the secondary metabolites from T. cordifolia revealed promising pharmacokinetic properties. Our study thus recommends that certain secondary metabolites of T. cordifolia are possible medicinal candidates against SARS-CoV-2.  相似文献   

17.
Seven new compounds, including one dimer novel skeleton, chamaecyformosanin A (1); three diterpenes, chamaecyformosanins B–D (2–4); one sesquiterpene, chamaecyformosanin E (5); and two monoterpenes, chamaecyformosanins F and G (6 and 7) were isolated from the methanol extract of the bark of Chamaecyparis obtusa var. formosana. Their structures were established by the mean of spectroscopic analysis and the comparison of NMR data with those of known analogues. Their structures were elucidated on the basis of physicochemical evidence, in-depth NMR spectroscopic analysis, and high-resolution mass spectrometry. Furthermore, the isolated compounds were subjected to an evaluation of their antimicrobial activity. Metabolites 1, 3, and 4 present antibacterial activities. It is worth mentioning that the chemical composition of the bark of C. obtusa var. formosana has never been studied in the past. This is the first time the barks from C. obtusa var. formosana were studied and two new skeleton compounds, 1 and 7, were obtained.  相似文献   

18.
Four new pentacyclic triterpenoids named Sabiadiscolor A–D (1 and 7–9) together with eleven known ones were isolated by repeated column chromatography. Their structures were identified and characterized by NMR and MS spectral data as 6 oleanane-type pentacyclic triterpenoids (1–6), 7 ursane-type ones (7–13), and 2 lupanane-type ones (14–15). Except for compound 15, all other compounds were isolated from Sabia discolor Dunn for the first time. Their α-glycosidase inhibitory activities were evaluated, which showed that compounds 1, 3, 8, 9, 13, and 15 implied remarkable activities with IC50 values ranging from 0.09 to 0.27 μM, and the preliminary structure–activity relationship was discussed.  相似文献   

19.
Euterpe oleracea Mart. (Arecaceae) is an endogenous palm tree from the Amazon region. Its seeds correspond to 85% of the fruit’s weight, a primary solid residue generated from pulp production, the accumulation of which represents a potential source of pollution and environmental problems. As such, this work aimed to quantify and determine the phytochemical composition of E. oleracea Mart. seeds from purple, white, and BRS-Pará açaí varieties using established analytical methods and also to evaluate it as an eco-friendly corrosion inhibitor. The proanthocyanidin quantification (n-butanol/hydrochloric acid assay) between varieties was 6.4–22.4 (w/w)/dry matter. Extract characterization showed that all varieties are composed of B-type procyanidin with a high mean degree of polymerization (mDP ≥ 10) by different analytical methodologies to ensure the results. The purple açaí extract, which presented 22.4% (w/w) proanthocyanidins/dry matter, was tested against corrosion of carbon steel AISI 1020 in neutral pH. The crude extract (1.0 g/L) was effective in controlling corrosion on the metal surface for 24 h. Our results demonstrated that the extracts rich in polymeric procyanidins obtained from industrial açaí waste could be used to inhibit carbon steel AISI 1020 in neutral pH as an abundant, inexpensive, and green source of corrosion inhibitor.  相似文献   

20.
In view of the abundant evidence that Lycopodiaceae alkaloids, including the well-known huperzine A (HupA), are among the potent acetylcholinesterase (AChE) inhibitors, an attempt was made to search for new compounds responsible for this property. For this purpose, three plant species belonging to the Lycopodiaceae family, commonly found in the Euro-Asia region, were subjected to the isolation of bioactive compounds, their identification and subsequent evaluation of their anticholinesterase and cytotoxic activities. Methanolic extracts of two Lycopodium and one Hupezia species were obtained via optimized pressurized liquid extraction (PLE) and then pre-purified using innovative gradient vacuum liquid chromatography (gVLC). For the first time, three sorbents of different porosity packed in polypropylene cartridges and mobile phase systems of different polarity were used to elute the target compounds. This technique proved to be a rapid tool for the obtainment of alkaloid fractions and allowed one to select the appropriate process conditions to yield potent AChE inhibitors in each of the species studied. More than 100 collected fractions were analyzed via HPLC/ESI-QTOF-MS, which enabled one to detect more than 50 compounds, including several new ones previously unreported. Some of them were present in high purity fractions (60–90% of the established purity). TLC bioautography assays proved that the analyzed species are rich sources of AChE inhibitors, but H. selago showed the highest anti-AChE activity. Additionally, the modified silanized silica gel sorbent used allowed one to isolate L. clavatum alkaloids more efficiently using an aqueous reversed-phase solvent system. Furthermore, the tested extracts from the three plant extracts were found to be safe, as they did not exhibit cytotoxicity to skin fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号