首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenolic compounds present in common beans (Phaseolus vulgaris L.) have been reported to possess antimicrobial, anti-inflammatory and ultraviolet radiation (UVR) protective properties. UVR from sunlight, which consists of UV-B and UV-A radiations, induces reactive oxygen species (ROS) and free radical formation, consequently activating proteinases and enzymes such as elastase and tyrosinase, leading to premature skin aging. The objective of this work was to extract, characterize and evaluate the antioxidant and antiaging potential of polyphenols from a black bean endemic variety. The polyphenolic extract was obtained from black beans by supercritical fluid extraction (SFE) using CO2 with a mixture of water–ethanol as a cosolvent and conventional leaching with a mixture of water–ethanol as solvent. The polyphenolic extracts were purified and characterized, and antioxidant potential, tyrosinase and elastase inhibitory potentials were measured. The extract obtained using the SFE method using CO2 and H2O–Ethanol (50:50 v/v) as a cosolvent showed the highest total phenolic compounds yield, with 66.60 ± 7.41 mg GAE/g coat (p > 0.05) and 7.30 ± 0.64 mg C3GE/g coat (p < 0.05) of anthocyanins compared to conventional leaching. Nineteen tentative phenolic compounds were identified in leaching crude extract using ESI-QTOF. Quercetin-3-D-galactoside was identified in crude and purified extracts. The purified SFC extract showed IC50 0.05 ± 0.002 and IC50 0.21 ± 0.008 mg/mL for DPPH and ABTS, respectively. The lowest IC50 value of tyrosinase inhibition was 0.143 ± 0.02 mg/mL and 0.005 ± 0.003 mg/mL of elastase inhibition for leaching purified extract. Phenolic compounds presented theoretical free energy values ranging from −5.3 to −7.8 kcal/mol for tyrosinase and −2.5 to −6.8 kcal/mol for elastase in molecular docking (in silico) studies. The results suggest that the purified extracts obtained by SFE or conventional leaching extraction could act as antioxidant and antiaging ingredients for cosmeceutical applications.  相似文献   

2.
Previous studies have revealed the numerous biological activities of the fruits of Illicium verum; however, the activities of its leaves and twigs have remained undiscovered. The study aimed to investigate the phytochemical components and antibacterial activity of the various extracts from the leaves and twigs of Illicium verum. The herbal extracts were prepared by supercritical CO2 extraction (SFE) and 95% ethanol extraction, followed by partition extraction based on solvent polarity. Analysis of antimicrobial activity was conducted through the usage of nine clinical antibiotic- resistant isolates, including Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Among the tested samples, the SFE extracts exhibited broader and stronger antibacterial activities against the test strains, with a range of MIC between 0.1–4.0 mg/mL and MBC between 0.2–4.5 mg/mL. Observations made through scanning electron microscopy revealed potential mechanism of the antimicrobial activities involved disruption of membrane integrity of the test pathogens. Evaluation of the chemical composition by gas chromatography-mass spectrometry indicated the presence of anethole, anisyl aldehyde, anisyl acetone and anisyl alcohol within the SFE extracts, demonstrating significant correlations with the antibacterial activities observed. Therefore, the leaves and twigs of Illicium verum hold great potential in being developed as new natural antibacterial agents.  相似文献   

3.
Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box–Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.  相似文献   

4.
Phenolic compounds from mango (M. indica) seed kernels (MSK) var. Sugar were obtained using supercritical CO2 and EtOH as an extraction solvent. For this purpose, a central composite design was carried out to evaluate the effect of extraction pressure (11–21 MPa), temperature (40–60 °C), and co-solvent contribution (5–15% w/w EtOH) on (i) extraction yield, (ii) oxidative stability (OS) of sunflower edible oil (SEO) with added extract using the Rancimat method, (iii) total phenolics content, (iv) total flavonoids content, and (v) DPPH radical assay. The most influential variable of the supercritical fluid extraction (SFE) process was the concentration of the co-solvent. The best OS of SEO was reached with the extract obtained at 21.0 MPa, 60 °C and 15% EtOH. Under these conditions, the extract increased the OS of SEO by up to 6.1 ± 0.2 h (OS of SEO without antioxidant, Control, was 3.5 h). The composition of the extract influenced the oxidative stability of the sunflower edible oil. By SFE it was possible to obtain extracts from mango seed kernels (MSK) var. Sugar that transfer OS to the SEO. These promissory extracts could be applied to foods and other products.  相似文献   

5.
Cichorium intybus L. or chicory plants are a natural source of health-promoting compounds in the form of supplements such as inulin, as well as other bioactive compounds such as sesquiterpene lactones (SLs). After inulin extraction, chicory roots are considered waste, with most SLs not being harnessed. We developed and optimized a new strategy for SL extraction that can contribute to the conversion of chicory root waste into valuable products to be used in human health-promoting applications. In our work, rich fractions of SLs were recovered from chicory roots using supercritical CO2. A response surface methodology was used to optimize the process parameters (pressure, temperature, flow rate, and co-solvent percentage) for the extraction performance. The best operating conditions were achieved at 350 bar, 40 °C, and 10% EtOH as a co-solvent in a 15 g/min flow rate for 120 min. The extraction with supercritical CO2 revealed to be more selective for the SLs than the conventional solid–liquid extraction with ethyl acetate. In our work, 1.68% mass and a 0.09% sesquiterpenes yield extraction were obtained, including the recovery of two sesquiterpene lactones (8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin), which, to the best of our knowledge, are not commercially available. A mixture of the abovementioned compounds were tested at different concentrations for their toxic profile and anti-inflammatory potential towards a human calcineurin/NFAT orthologue pathway in a yeast model, the calcineurin/Crz1 pathway. The SFE extract obtained, rich in SLs, yielded results of inhibition of 61.74 ± 6.87% with 50 µg/mL, and the purified fraction containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin inhibited the activation of the reporter gene up to 53.38 ± 3.9% at 10 µg/mL. The potential activity of the purified fraction was also validated by the ability to inhibit Crz1 nuclear translocation and accumulation. These results reveal a possible exploitable green technology to recover potential anti-inflammatory compounds from chicory roots waste after inulin extraction.  相似文献   

6.
Usnic acid (UA) was extracted from Usnea longissima (L.) Ach. in supercritical carbon dioxide (SC-CO2) medium. The selected process parameters were extraction temperature (35–45 °C), amount of co-solvent (0%–5%) and extraction time (5–9 h). These parameters were applied to Box-Behnken design (BBD) belonging to response surface methodology (RSM) to determine optimum process parameters for the highest amount of UA in the extract. g UA/100g lichen, extraction yield % and UA content values were calculated in the range of 0.045–0.317, 2.77–5.4 and 71%–82% in different experimental conditions, respectively. The optimum conditions were predicted as 42 °C, 4.3% (ethanol) and 7.48 h. It was determined that the predicted and experimental values of g UA/100g lichen were compatible, and the suggested model was valid.  相似文献   

7.
Supercritical fluid extraction of flavonoids from Scutellariae Radix   总被引:9,自引:0,他引:9  
An optimal condition of supercritical fluid extraction (SFE) for flavonoids of Scutellaria baicalensis was developed. In this study, various temperatures, pressures and modifiers were studied. The conventional extraction methods were conducted in parallel for comparison. The crude extracts were qualitatively compared by TLC and GC–MS, and the contents of flavonoids were determined by HPLC. The amounts of baicalin, baicalein and wogonin in the Scutellariae Radix obtained by supercritical fluid extraction and a conventional sonic shaking method were 137.6 mg/g, 8.6 mg/g and 2.2 mg/g, 113.5 mg/g, 5.7 mg/g and 2.3 mg/g, respectively. Application of SFE for extraction of the flavonoids from Scutellariae Radix was preferable. The optimal conditions of SFE was as follows: supercritical carbon dioxide–MeOH–water (20:2.1:0.9), 50°C and 200 bar.  相似文献   

8.
Huang L  Kawi S  Poh C  Hidajat K  Ng SC 《Talanta》2005,66(4):943-951
Extraction of cationic surfactant templates from MCM-41, MCM-48, SBA-1 and SBA-3 has been conducted using CH3OH-modified CO2 supercritical fluid. The supercritical fluid extraction (SFE) has been integrated with thermogravimetry (TG), X-ray diffraction (XRD) and N2 adsorption-desorption to evaluate extraction efficiency and structural stability of mesoporous materials. Experiments of optimization indicate that the conditions of 90 bar, 85 °C, CH3OH/CO2 = 0.1/1.0 ml/min and 3 h are most suitable for the SFE of cationic templates. 76-95% of the cationic templates can be extracted from the mesoporous materials. XRD and N2 adsorption-desorption studies illustrate that SFE possesses some advantages over calcination in maintaining mesoporous uniformity and structural stability when used to remove templates. The impact of curing on mesoporous structure is also dealt with.  相似文献   

9.
Supercritical fluid extraction was coupled directly with high performance liquid chromatograph. The system was evaluated for direct injection of supercritical CO2 and modified supercritical CO2 at high pressure and temperature onto a HPLC system with varying mobile phase compositions and flow rates. Injection of 9 μL supercritical CO2 onto the HPLC using methanol/water mobile phases from 100% methanol to 80% with a flow of 1.0 mL/min did not adversely affect the baseline of UV detector. However at higher percentages of water, CO2 solubility in the mobile phase decreased and caused baseline interferences on the UV detector. At higher HPLC mobile phase flow rates, supercritical CO2 was injected to higher percentages of water without any effect on the UV baseline. Also, increasing the extraction pressure or modifier concentration did not change the results. Separations of polynuclear aromatic hydrocarbons and linear alkenebenzene sulfonate test mixtures were obtained using on-line SFE/HPLC interfaced system.  相似文献   

10.
Toxicity evaluation of Dicofol to Astyanax bimaculatus schubarti, a characteristic fish species living in tropical rivers and lakes was carried out through LC50 – 96 Hours. These experiments were performed under laboratory controlled conditions with atmospheric air flow and dilution water at 25°C in the static mode, supercritical fluid extraction (SFE) with pure CO2 and CO2 modified with hexane and methanol were used at 50, 70, 80, and 100°C and 300 atm. Several collection modes were studied to extract Dicofol from fish samples. The extraction efficiencies were directly comparedd with those obtained after 8 h of Soxhlet extraction using the same clean-up with Florisil and analysis by HRGC/ECD and HRGC/MS as a confirmatory analytical technique. The SFE recoveries at temperatures lower than 80°C were typically lower than soxhlet recoveries; however a temperature increase enhanced the efficiency of SFE. The results showed that under certain conditions, supercritical fluid gave higher extractio power (extracted 11 % more pesticide), shorter extraction time, and lower solvent consumption than Soxhlet, thus affording an excellent alternative to the conventional method for extracting Dicofol from fish sample.  相似文献   

11.
X. Ma  X. Yu  Z. Zheng  J. Mao 《Chromatographia》1991,32(1-2):40-44
Summary An analytical supercritical fluid extraction (SFE) technique, followed by GC/MS, was developed to separate and determine the volatile components in Chinese herbal medicine. Three kinds of herbs, frankincense, myrrh, andEvodia rutaecarpa were extracted and analyzed. The extraction was carried out using supercritical fluid CO2 at 20 MPa and 50°C. The main factors affecting the efficiency and selectivity of the extraction are discussed. The results revealed the potential of supercritical fluid extraction as an analytical procedure for the study of medicinal plants.  相似文献   

12.
López M  Arce L  Garrido J  Ríos A  Valcárcel M 《Talanta》2004,64(3):726-731
An on-line supercritical fluid extraction (SFE) system coupled to a continuous flow manifold including a UV detector was used as a screening system to extract astaxanthin from crayfish, which was found to be the major carotenoid present in the samples. This compound constitutes the principal additive used to dye salmon flesh. The flow manifold was used to confirm the presence of astaxanthin in the crustacean samples. Also, an HPLC/UV-vis method was used to ascertain that this compound was the major carotenoid extracted under the optimum SFE conditions employed. The influence of SFE operating variables such as pressure, temperature, equilibration time, extraction time, trap temperature, and volume of CO2 modifier was examined in order to maximize the efficiency of analyte extraction. The use of supercritical CO2 enables the expeditious, selective, quantitative extraction of astaxanthin from crustaceans.  相似文献   

13.
 An on-line system of supercritical fluid extraction (SFE) and high performance liquid chromatography (HPLC) via solid phase extraction (SPE) is described for the determination of palladium and rhodium 2,2,6,6-tetramethyl-3,5-heptanedione-(thd) as well as rhodium-acetylacetonate-(acac) and benzylacetonate-(bzac) chelates. The chelates were extracted with supercritical CO2 from sand and humic acid, concentrated on SPE cartridges and analysed with HPLC. Two cartridge materials were tested and compared to off-line trapping. The percentage of the breakthrough and cartridge retained material were measured in liquid dichloromethane. The SFE conditions could be optimized to separate metal chelates during the extraction. The supercritical fluid (SF) behaviour of different ligands on rhodium were investigated. Received: 19 July 1996/Revised: 11 December 1996/Accepted: 14 December 1996  相似文献   

14.
Colombian mango production, which exceeded 261,000 t in 2020, generates about 40% of the whole fruit as solid waste, of which more than 50% are seed kernels (over 52,000 t solid by-product); though none is currently used for commercial purposes. This study reports the results of the supercritical carbon dioxide (scCO2) extraction of an oil rich in essential fatty acids (EFAs) from revalorized mango seed kernels and the optimization of the process by the Response Surface Methodology (RSM). In pilot-scale scCO2 experiments, pressure (23–37 MPa) and temperature (52–73 °C) were varied, using 4.5 kg of CO2. The highest experimental oil extraction yield was 83 g/kg (37 MPa and 63 °C); while RSM predicted that 84 g/kg would be extracted at 35 MPa and 65 °C. Moreover, by fine-tuning pressure and temperature it was possible to obtain an EFA-rich lipid fraction in linoleic (37 g/kg) and α-linolenic (4 g/kg) acids, along with a high oleic acid content (155 g/kg), by using a relatively low extraction pressure (23 MPa), which makes the process a promising approach for the extraction of oil from mango waste on an industrial scale, based on a circular economy model.  相似文献   

15.
Haematococcus pluvialis is the largest producer of natural astaxanthin in the world. Astaxanthin is a bioactive compound used in food, feed, nutraceutics, and cosmetics. In this study, astaxanthin extraction from H. pluvialis by supercritical fluid extraction was evaluated. The effects of temperature (40 and 50 °C), pressure (40 and 50 MPa), and CO2 flow rate (2 and 4 L/min) were investigated. The results showed that the highest astaxanthin recovery was obtained at 50 °C/50 MPa and the CO2 flow rates evaluated had no significant effect. It was possible to achieve astaxanthin recoveries of 95% after 175 min for a CO2 flow rate of 2 L/min, and 95 min for CO2 flow rate of 4 L/min. The ω-6/ω-3 ratios obtained were similar in all conditions, reaching 0.87, demonstrating that the extracts from H. pluvialis by SFE are rich in unsaturated fatty acids (UFA) which increases their positive effects when used as a functional ingredient in food.  相似文献   

16.
Chiu KH  Yak HK  Wai CM  Lang Q 《Talanta》2005,65(1):149-154
Packed in a high-pressure vessel and under calculated conditions, dry ice can be used as a source of carbon dioxide for supercritical CO2 extraction or liquid CO2 of organic compounds from environmental samples. Coupled with a fluid modifier such as toluene, dry ice-originated supercritical CO2 (Sc CO2) achieves quantitative extraction of many volatile organic compounds (VOCs) and semivolatile organic compounds (SOCs) including polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and polychlorinated biphenyls (PCBs) from solid matrices. Compared to contemporary manual or automated supercritical fluid extraction (SFE) technologies, this novel technique simplifies SFE to a minimum requirement by eliminating the need of a high-pressure pump and any electrical peripherals associated with it. This technique is highly suitable to analytical areas where sample preservation is essential but difficult in the sampling field, or where sample collection, sample preparation, and analysis are to be done in the field.  相似文献   

17.
The volatile components of Cnidium monnieri were obtained by supercritical fluid extraction (SFE) and analyzed by GC‐MS (identification and determination of metabolites). The compounds were identified according to their retention times and mass spectra. The effects of different parameters, such as extraction pressure, temperature, dynamic extraction time, flow rate of CO2, on the SFE of C. monnieri extracts were investigated. A total of 14 compounds of SFE extracts were identified. Osthole (69.52%), bornyl acetate (10.03%), α‐pinene (4.71%), and imperatorin (2.42%) were the major compounds identified in C. monnieri SFE extracts. The quantitation of osthole and imperatorin were then accomplished. The linear calibration ranges were all 5–1000 μg/mL for osthole and imperatorin by GC‐MS analysis. The recovery of osthole and imperatorin were in the range 96.5–101.8%. The LODs for osthole and imperatorin were 1.0 and 0.6 μg/mL, respectively.  相似文献   

18.
The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO2, solvent extraction, and two‐step high‐speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO2, and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two‐step high‐speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high‐speed countercurrent chromatography for further enrichment and consecutive high‐speed countercurrent chromatography for purification. The yield of concentrates from high‐speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high‐speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high‐speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system.  相似文献   

19.
Summary Supercritical fluid extraction is a powerful technique with great promise in organic analytical chemistry. To date little has been published on the use of SFE in the analysis of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F). The data point, however, to the feasibility of a selective and exhaustive extraction of these compounds. Solid phase trapping of the extracted PCDD/F allows for on-line class separation and clean-up and seems to be the most flexible choice of collection mode. Both CO2 and N2O can be used as supercritical fluids. Extraction recoveries can be improved with a small percentage of an organic solvent added to the supercritical fluid as modifier. Methanol and benzene have proven to be efficient. Relatively strong supercritical fluid conditions are needed for the extraction of PCDD/F from fly ash (350–400 atm at 330–370 K). Spiked internal standards are easily extracted even at mild conditions whereas native PCDD/F are not; thus caution should be taken when an isotopic dilution technique is used for a future evaluation of SFE in the analysis of PCDD/F.  相似文献   

20.
Supercritical fluid extraction (SFE) of aqueous solutions is often limited by poor mass transport. The performance of a new gas-liquid entraining device was investigated to improve mass transport and thereby increase extraction efficiency. As a test system, iron(III) was extracted from water with a β-diketone chelating agent (HL) and supercritical fluid carbon dioxide. Metal β-diketonate complexes with sufficient solubility in supercritical fluid CO2 are often poorly extracted from aqueous solutions due to limited mass transport between the water-soluble metal ion and the CO2-soluble chelating agent. The new entraining device maximizes contact between the ligand-rich CO2 phase and the metal ion-rich aqueous phase. Iron(III) was extracted from water with the chelating agent 2,2,7-trimethyl-3,5-octanedione (H(tod)) and supercritical fluid CO2 at 60 °C and 20.8 MPa. With entrainment, 79% of the iron was removed from the aqueous phase. This represents a three-fold increase in iron extraction efficiency over that of a static system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号