首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 μm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.  相似文献   

2.
The present study investigated the structure, degradation properties, and combustion behavior of starch from maize, sweet potato, lotus root, and tobacco. Compared with other plant starches, tobacco starch had the smallest size, the highest amylose content and the least crystallinity. Microscale combustion calorimetry (MCC) experiment demonstrated that sweet potato starch showed the maximum peak heat release rate value (888.0 W g?1) while tobacco starch showed the minimum value (316.0 W g?1) and thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR) results showed tobacco starch had good char formability (residue mass: 15.6%) and released more incombustible gaseous products, such as H2O and CO2. These results suggest that the thermal properties of plant starches were mainly influenced by the structural features and amylose content, especially the amylose ratio, and tobacco starch was very promising for application in green flame-retardant material.  相似文献   

3.
The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.  相似文献   

4.
The aim of the study was to assess the effect of soil type and the application of fertilizer composed of ashes from biomass combustion to potatoes on selected physicochemical, rheological, and thermal properties of potato starches isolated by using the laboratory method. Potatoes were grown in Haplic Luvisol (HL) and Gleyic Chernozem (GC) soil and fertilized with different doses of biomass combustion ash (D1–D6) with different mineral contents. The thermodynamic characteristics of gelatinization and retrogradation were identified by DSC. The analyses of rheological properties included the determination of the gelatinization characteristics by using the RVA method, flow curves, and assessment of the viscoelastic properties of starch gels. It was found that the starches tested contained from 24.7 to 29.7 g/100 g d.m. amylose, and the clarity of 1% starch pastes ranged from 59% to 68%. The gelatinization characteristics that were determined showed statistically significant differences between the starches analyzed in terms of the tested factors. The value of maximum viscosity and final viscosity varied, respectively, in the range of 2017–2404 mPa·s and 2811–3112 mPa·s, respectively. The samples of the potato starches studied showed a non-Newtonian flow, shear thinning, and the phenomenon of thixotropy. After cooling, the starch gels showed different viscoelastic properties, all of which were weak gels (tan δ = G″/G′ > 0.1).  相似文献   

5.
The structure formation of starch polysaccharides in aqueous solutions is determined by the ratio of amylose to amylopectin and the molecular properties of these components. Our research is focused on establishing defined correlations between composition, molecular structure in diluted solutions and rheological properties of concentrated aqueous starch polysaccharide solutions. Diluted solutions were investigated by size exclusion chromatography with multi angle laser light scattering detector. Measurements of concentrated aqueous solutions were carried out by a Bohlin cs-rheometer with programmed stress using a cone-plate geometry of 40 mm diameter and a cone angle of 4 degrees. Gels were characterized by oscillatory measurements taking into account the frequency dependence of the storage and loss moduli and the influence of a stress sweep on the moduli. The concentration dependence was investigated with starches of potato, wheat, maize and wrinkled pea. Starches with quite similar amylose content as from potato, wheat and maize, show different behavior in rheological properties. Further differences in structure formation were obtained by enzymatic hydrolysis of potato and wheat starch with bacterial α-amylase. The hydrolyzing conditions were chosen such that the degradation led to molecular weights between 5*105 and 107 g/mol. Detailed information about molecular composition was obtained by fractionation of degraded starches. The amylopectin was found to be degraded more strongly than the contained amylose. In comparison to native starch polysaccharide fractions the amylopectin hinders the gelation process in dependence on its molecular weight distribution and the length of the outer chains.  相似文献   

6.
The effects of black tea polyphenol extract (BTPE) on the retrogradation of starches from different plant sources were studied using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). DSC analysis shows that the gelatinization temperature of maize starch and starches from different rice varieties increased with increasing BTPE level. After storage at 4 °C, BTPE at a concentration of 15% markedly retarded the retrogradation of maize starch and starches from different rice varieties. Native maize starch and starches from different rice varieties showed typical A-type X-ray diffraction patterns, while native potato starch showed a typical B-type X-ray diffraction pattern. Adding BTPE significantly affected the crystalline region and intensities of X-ray diffraction peaks of maize and rice starch granules. It is concluded that adding BTPE markedly inhibits the retrogradation of maize starch and starches from different rice varieties, but has no significant influence on the gelatinization and retrogradation characteristics of potato starch.  相似文献   

7.
Differential scanning calorimetry (DSC), acidic hydrolysis and different physico-chemical approaches were used to study thermodynamic and structural characteristics of starches from near-isogenic wheat lines to establish the effect of different combinations of active granule-bound starch synthase isoforms, taking part in amylose biosynthesis, on the structure and thermodynamic properties of starches. Obtained results suggest that the effect of different GBSS I combinations is realized through altered amylose localization within starch granules, reflecting in changes of melting temperature of crystalline lamellae (T m) and rates of acidic hydrolysis. It has also been demonstrated that changes in T m values for native wheat starches are determined by amylose content in amylopectin clusters.  相似文献   

8.
Cassava, potato, sweet potato, and Peruvian carrot starches were hydrolyzed with 15% v/v sulfuric acid solution for up to 30 days. Näegeli dextrins obtained from 1, 3, 6, 12, and 30 days were evaluated using differential scanning calorimeter (DSC) and scanning electron microscopy (SEM). Two phases of hydrolysis were found. The first phase was attributed to faster degradation of amorphous areas of granules, whereas the second phase corresponded to slower degradation of crystalline regions. Peruvian carrot starch was the most susceptible to acid, whereas potato and sweet potato starches were the most resistant. From DSC, it was observed a progressive reduction in peak height and a broadening of peaks with increasing hydrolysis time. The peaks shifted to higher temperatures. Onset temperature decreased on first day of hydrolysis for cassava and Peruvian carrot starches, and on third day for potato and sweet potato. Enthalpy decreased during first stage of hydrolysis in cassava and Peruvian carrot starches, and during second phase, it reduced in all starches. SEM showed that the granule surfaces were degraded by erosion on the first day of treatment, followed by degradation of amorphous areas. On third day, potato and sweet potato starches still displayed some granules almost intact, whereas cassava and Peruvian carrot starch granules were totally degraded, confirming their high susceptibility to acid attack. On sixth day of hydrolysis, starch granules had faceted structures, characteristic of crystalline material. The effect that acid hydrolysis had on thermal properties of starches depended on both hydrolysis stage and starch source.  相似文献   

9.
The study addressed starch-based coatings on paper and fabrics. Coated materials and free starch films containing different amounts of a well-established plasticizer (glycerol) or potential plasticizer (mainly polyols) were tested with respect to water vapour permeance (WVPe), water vapour permeability (WVP), glass transition temperature (Tg), and mechanical strength (tensile tests). Both normal and high- amylose potato starch were used. These starches were modified by (a) oxidation, (b) oxidation and hydroxypropylation or (c) oxidation and hydrophobically modified by reaction with octenyl- or alkenyl-substituted succinic acid anhydride. Free films of hydroxypropylated high-amylose potato starch showed a lower WVP than did the corresponding starches based on regular potato starch. The WVP of the hydrophobically modified regular potato starches was substantially higher than that of films of the corresponding hydroxypropylated starches. The expected hydrophobic effect of the succinic acid anhydrides in terms of a reduced WVP could not be observed. When glycerol was used as a plasticizer, about 30 parts (by wt.) per hundred parts of starch were needed in order to reduce the Tg and to cause observable changes in the mechanical properties of the free films.  相似文献   

10.
Potato starch is one of the most important renewable sources for industrial manufacturing of organic compounds. Currently, it is produced from mixed potato varieties that often are harvested from different fields. Meanwhile, tuber starches of various potato breeds differ in their crystallinity, granule morphology, and other physical and chemical parameters. We studied the reactions of raw potato starches of different origins to chemical and biochemical reactions typically used for industrial starch modification. The results clearly demonstrate that there is a significant difference in the reactivity of the starches of different potato genotypes. While the main products of the transformations are the same, their preparative yields differ significantly. Thus, tuber starch of certain potato varieties may be more suitable for specific industrial purposes. Starch reactivity may potentially be a phenotypical trait for potato breeding to obtain potato starches for various industrial applications.  相似文献   

11.
In this study, we investigated the differences in the crystallinity of starch films (mung bean, water chestnut, sweet potato, and cassava starches) with different moisture contents stored in different humidity conditions (11%, 22%, 33%, 43%, 54%, 75%, and 84%) and evaluated their thermal adhesion and sealing properties. X-ray diffraction analysis revealed an association between the degree of crystallinity and the moisture content in starch films: crystallinity decreased with an increase in the moisture content. Field Emission Scanning Electron Microscopy (FE-SEM) analysis showed that films with low moisture content failed to completely adhere, but films with a high moisture content and lower crystallinity showed good adherence, with two films perfectly adhered at the same temperature because water molecules acted as a mobility enhancer. The peeling test demonstrated the failure modes of the heat-bound films. The cassava starch film, which had a low amylose content and crystallinity, showed better adhesion compared to other starch films.  相似文献   

12.
Soft-shell capsules are prepared herein using hydroxypropyl starches from different botanical sources (maize, waxy maize, potato, and cassava) as a replacement for animal-based materials such as gelatin. The physical, mechanical, and morphological properties of the starch films are characterized to investigate the possibility of manufacturing soft-shell capsules. Starch films originating from tubers, including potato and cassava, exhibit higher tensile strength, resulting in higher hardness of the soft-shell capsules compared to those originating from maize and waxy maize starches. None of the starch-based soft-shell capsules broke in a brittleness test, and there are no distortion defects in the seams that seal the capsules. Disintegration and stability tests over six months show that although the soft-shell capsules manufactured from maize and potato starch disintegrate faster than those from waxy maize and cassava starch, all of the capsules disintegrate within 1200 s, which is acceptable for commercial application.  相似文献   

13.
Tapioca and potato starches were used to investigate the effect of heat–moisture treatment (HMT; 95–96 °C, 0–60 min, 1–6 iterations) on gelatinization properties, swelling power (SP), solubility and pasting properties. Tapioca starch had similar content and degree of polymerization of amylose, but a higher amylopectin short/long chain ratio, to potato starch. After HMT, the gelatinization temperature range was narrowed for tapioca starch, but was widened for potato starch. Decreases in SP and solubility were less for tapioca than potato starches, coinciding with a progressive shift to the moderate-swelling pasting profile for tapioca but a drastic change to the restricted-swelling profile for potato. Moreover, decreasing extents of SP and maximum viscosity for HMT tapioca starch were, respectively, in the range of 47–63% and 0–36%, and those of HMT potato starch were 89–92% and 63–94%. These findings indicate that the granule expansion and viscosity change of starch during gelatinization can be tailored stepwise by altering the HMT holding time and iteration.  相似文献   

14.
Abstract

Recent regulations restricting the use of one-use-plastics open the possibility to develop starch-based edible packaging material. The objective of this work was to determine the effect of three different modified starches on starch and dextrin composite edible films by a mixture design approach on edible films’ mechanical properties. The amylose content of chemically modified starches influenced their swelling capacities, where higher amylose content was inversely related to water-power uptake and directly related to film thickness. CMS3 Nifrastarch-TS edible films, with higher amylose content, presented higher puncture force and tensile strength, but lower puncture deformation and elongation, related to a less smooth surface, according to atomic force micrographs. The use of CMS1 Gelamil-100, with lower amylose content, decreased stiffness but increased films’ stretching, presenting higher surface smoothness film topography. The use of commercial chemical modified starches in combination with starch and dextrin will allow to control of edible film thickness and hence, mechanical properties, depending on food covering necessities.  相似文献   

15.
半夏淀粉的理化特性   总被引:1,自引:0,他引:1  
研究了不同产地的4种半夏淀粉的理化特性,包括直链淀粉含量、膨胀度、溶解性、持水性、淀粉粒大小和形貌、结晶类型、热特性和糊化特性等。结果表明,这些半夏淀粉中直链淀粉含量为18.60%~23.91%;膨胀度21.53%~23.09%;溶解度11.5%~32.3%;持水性100.3%~119.0%。淀粉粒单粒球形,卵形或圆半球形,直径2~20μm,复粒由2~3个分粒组成,其结晶类型均为C型,结晶度15.0%~37.9%。用差示扫描量热仪测得的转变温度TO、TP和TC分别为71.58~77.75℃、83.03~83.84℃和89.41~90.99℃,热焓为4.316~5.809 J/g。用快速粘度分析仪测定了4种半夏淀粉的糊化特征值:峰值粘度、热糊粘度、冷糊粘度、稀懈值和回复值分别为149.5~226.2、97.7~127.2、141.8~194.3、50.4~99.0和44.2~67.2 RVU。糊化温度77.8~79.9℃,峰值时间8.3~8.7 min。  相似文献   

16.
In order to explore the processing and application potential of Chinese yam starch, nine kinds of Chinese yam starch (GY11, GY5, GY2, GXPY, LCY, SFY, MPY, SYPY, ASY) from South China were collected and characterized. The chemical composition, rheological properties, thermal properties, and in vitro starch digestion were compared, and the correlation between the structure and processing properties of these yam starches was analyzed using Pearson correlation. The results show that GY2 had the highest amylose content of 28.70%. All the yam starches were similarly elliptical, and all the yam starch gels showed pseudoplastic behavior. Yam starches showed similar pasting temperatures and resistant starch content, but SYPY showed the largest particle size (28.4 μm), SFY showed the highest setback (2712.33 cp), and LCY showed the highest peak viscosity (6145.67 cp) and breakdown (2672.33 cp). In addition, these yam starches also showed different crystal types (A-type, B-type, C-type), relative crystallinity (26.54–31.48%), the ratios of 1045/1022 cm−1 (0.836–1.213), pasting properties, and rheological properties, so the yam starches have different application potentials. The rheological and pasting properties were related to the structural properties of starch, such as DI, Mw, and particle size, and were also closely related to the thermodynamic properties. The appropriate processing methods and purposes of the processed products of these yam starches can be selected according to their characteristics.  相似文献   

17.
The influence of native lipids and additives of surface-active compounds on starch paste rheology was investigated. The aim of the study was to gain better understanding of mechanisms involved in starch gelatinization and how these structure changes of granules later affect rheological properties of pastes and gels. Starches from three main sources—potato, maize, and wheat—were tested; sodium dodecylsulfate, oleate, and benzalkonium chloride were employed as additives. Starch pasting was examined by a rheometer to get a viscosity profile, also pastes were analyzed by differential scanning calorimetry, for particle size using a light scattering technique. Results revealed that there was a competition between native lipids and added surfactants for amylose complexation. Complexes formed during gelatinization were strongly affecting granule swelling and dissolution of starch polymers, and viscosity of pastes was mainly dependent on the particle size of a disperse phase in the paste. Addition of strong ionic surfactants to cereal starches resulted in smaller granular remnants and, therefore, decreased viscosity, while the weak anionic surfactant promoted an increase in the particle size and paste viscosity for both cereal and tuber starches. The mechanism of the effect of surfactants on the particle size in pastes is discussed.  相似文献   

18.
C-type starches with different proportions of A- and B-type crystallinities have different intensities and crystallinities of X-ray diffraction peaks. In this study, the intensities and crystallinities of X-ray diffraction peaks, molecular components and heat properties of C-type starches were investigated in seven sweet potato varieties, and their relationships were analyzed. The intensity and crystallinity of a diffraction peak at 5.6° were significantly positively correlated to the DP6-12 branch-chains of amylopectin and significantly negatively correlated to the true amylose content (TAC) determined by concanavalin A precipitation, gelatinization temperature, gelatinization enthalpy, water solubility at 95 °C, and pasting temperature. The intensity of diffraction peaks at 15° and 23° were significantly positively correlated to the gelatinization temperature and pasting temperature and significantly negatively correlated to the pasting peak viscosity. The significantly positive relationships were detected between the crystallinity of a diffraction peak at 15° and the DP13-24 branch-chains of amylopectin, gelatinization conclusion temperature and water solubility, between the crystallinity of diffraction peak at 17–18° and the TAC, gelatinization onset temperature, water solubility and pasting temperature, between the crystallinity of a diffraction peak at 23° and the gelatinization conclusion temperature and pasting peak time, and between the total crystallinity and the TAC, gelatinization conclusion temperature, water solubility and pasting temperature. The score plot of principle component analysis showed that the molecular components and heat property parameters could differentiate the C-type starches and agreed with their characteristics of X-ray diffraction peaks. This study provides some references for the utilizations of C-type starches.  相似文献   

19.
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.  相似文献   

20.
High-sensitivity differential scanning calorimetry (HSDSC) and small-angle X-ray scattering (SAXS) were used to investigate the structural characteristics of starch granules with different amylose content extracted from near-isogenic wheat lines with different combinations of active granule-bound starch synthase (GBSS I) isoforms. Paracrystalline diffraction model, ‘two-state’ model of starch melting and other physico-chemical approaches were used to estimate the sizes of amylopectin clusters, the thicknesses of crystalline lamellae and the structure of amylopectin defects for investigated wheat starches. The joint analysis of SAXS and DSC data has shown that the size of amylopectin cluster, the thickness of crystalline lamellae and the structure of amylopectin defects do not depend on the differences in combinations of active GBSS I isozymes. The data obtained supposed that the amylopectin cluster size and the thickness of crystalline lamellae are, generally, the universal structural parameters for wheat starches. Additionally, the data obtained suggest that increase of amylose content is accompanied by accumulation of both amylose tie-chains, located as defects in crystalline lamellae, and amylose chains oriented transversely to the lamella stack within amorphous lamellae. Disordered ends of amylopectin double helices and/or pre-existing double helices not participating in formation of crystals are considered as amylopectin defects arranged in crystalline lamellae. The relationship between structure of wheat starches extracted from near-isogenic lines and their thermodynamic properties was recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号