首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, isotopic analysis has been proven a valuable tool for the determination of the origin of various materials. In this article, we studied the 18O and 13C isotopic values of 210 olive oil samples that were originated from different regions in Greece in order to verify how these values are affected by the climate regime. We observed that the δ18O isotopic values range from 19.2 ‰ to 25.2 ‰ and the δ13C values range from −32.7 ‰ to −28.3 ‰. These differences between the olive oils’ isotopic values depended on the regional temperature, the meteoric water, and the distance from the sea. Furthermore, we studied the 13C isotopic values of biophenolic extracts, and we observed that they have same capability to differentiate the geographic origin. Finally, we compared the isotopic values of Greek olive oils with samples from Italy, and we concluded that there is a great dependence of oxygen isotopes on the climatic characteristics of the different geographical areas.  相似文献   

2.
The 87Sr/86Sr ratio of 39 Champagnes from six different brands, originating from the whole “Appellation d’Origine Contrôlée” (AOC) Champagne was analyzed to establish a possible relation with the geographical origin. Musts (i.e., grape juice) and base wines were also analyzed to study the evolution of the Sr isotopic ratio during the elaboration process of sparkling wine. The results demonstrate that there is a very homogeneous Sr isotopic ratio (87Sr/86Sr = 0.70812, n = 37) and a narrow span of variability (2σ = 0.00007, n = 37). Moreover, the Sr concentrations in Champagnes have also low variability, which can be in part explained by the homogeneity of the bedrock in the AOC Champagne. Measurements of the 87Sr/86Sr ratio from musts and base wines show that blending during Champagne production plays a major role in the limited variability observed. Further, the 87Sr/86Sr of the musts were closely linked to the 87Sr/86Sr ratio of the vineyard soil. It appears that the 87Sr/86Sr of the product does not change during the elaboration process, but its variability decreases throughout the process due to blending. Both the homogeneity of the soil composition in the Champagne AOC and the blending process during the wine making process with several blending steps at different stages account for the unique and stable Sr isotopic signature of the Champagne wines.  相似文献   

3.
The Pb isotopic composition (206Pb/207Pb and 208Pb/206Pb) in smelter-impacted soils was measured using a quadrupole-based ICP-MS. Four forest/tilled soil profiles were sampled according to the distance from the lead smelter in Píbram (Czech Republic), prevailing wind direction, geological background and soil type. The results were compared with the Pb isotopic composition of bedrocks and waste materials from Pb metallurgy (smelting slags, air-pollution-control residues). The isotopic composition of soils confirms the predominant role of metallurgy on the general pollution in the area. The highly contaminated soils from the vicinity of the smelter contain up to 35,300 mg Pb kg–1 and exhibit an isotopic composition close to that of car battery processing (206Pb/207Pb up to 1.177). A coupled concentration/isotopic study of soil profiles showed that the smelter-induced pollution had penetrated even to the mineral soil horizons, indicating an important vertical mobility of Pb contaminant within the soil profile. The calculated downward penetration rate of Pb in soils ranges from 0.3 to 0.36 cm year–1.  相似文献   

4.
The drugs delivery system in the treatment of diseases has advantages such as reduced toxicity, increased availability of the drug, etc. Therefore, studies of the supramolecular interactions between local anesthetics (LAs) butamben (BTB) or ropivacaine (RVC) complexed with 2-hydroxypropyl-β-cyclodextrin (HP-βCD) and carried in Stealth liposomal (SL) are performed. 1H-NMR nuclear magnetic resonance (DOSY and STD) were used as the main tools. The displacements observed in the 1H-NMR presented the complexion between LAs and HP-βCD. The diffusion coefficients of free BTB and RVC were 7.70 × 10−10 m2 s−1 and 4.07 × 10−10 m2 s−1, and in the complex with HP-βCD were 1.90 × 10−10 m2 s−1 and 3.64 × 10−10 m2 s−1, respectively, which indicate a strong interaction between the BTB molecule and HP-βCD (98.3% molar fraction and Ka = 72.279 L/mol). With STD-NMR, the encapsulation of the BTB/HP-βCD and RVC/HP-βCD in SL vesicles was proven. Beyond the saturation transfer to the LAs, there is the magnetization transfer to the hydrogens of HP-βCD. BTB and RVC have already been studied in normal liposome systems; however, little is known of their behavior in SL.  相似文献   

5.
Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a “Li-stuffed” spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte–cathode composites. Materials of composition Li1.25M(III)0.25TiO4, M(III) = Cr or Al were prepared through solid-state methods. The room-temperature bulk Li+-ion conductivity is 1.63 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4. Addition of Li3BO3 (LBO) increases ionic and electronic conductivity reaching a bulk Li+ ion conductivity averaging 6.8 × 10−4 S cm−1, a total Li-ion conductivity averaging 4.2 × 10−4 S cm−1, and electronic conductivity averaging 3.8 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4 with 1 wt. % LBO. An electrochemically active solid solution of Li1.25Cr0.25Mn1.5O4 and LiNi0.5Mn1.5O4 was prepared. This work proves that Li-stuffed spinels can achieve fast Li-ion conduction and that the concept is potentially useful to enable a single-phase fully solid electrode without interphase impedance.  相似文献   

6.
By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A] = [OTf] = [O3SCF3], [PF6]), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}441:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.  相似文献   

7.
Olive oil is an important product in the Mediterranean diet, due to its health benefits and sensorial characteristics. Picholine marocaine is the most cultivated variety in Morocco. The present research aims to evaluate the phenolic compounds, vitamin E and fatty acids of commercial Picholine marocaine virgin olive oils (VOOs) from five different North Moroccan provinces (Chefchaouen, Taounate, Errachidia, Beni Mellal and Taza), using HPLC-photodiode array (PDA)/electrospray ionization (ESI)-MS, normal phase (NP)-HPLC/ fluorescence detector (FLD) and GC-flame ionization detector (FID)/MS, respectively. The obtained results showed an average content of 130.0 mg kg−1 of secoiridoids (oleuropein aglycone, 10-hydroxy-oleuropein aglycone and ligstroside aglycone, oleocanthal and oleacein), 108.1 mg kg−1 of phenolic alcohols (tyrosol and hydroxytyrosol), 34.7 mg kg−1 of phenolic acids (caffeic acid, ferulic acid and elenolic acid), and 8.24 mg kg−1 of flavonoids (luteolin, luteolin glucoside, apigenin). With regard to vitamin E, α-tocopherol was the most abundant vitamin E (57.9 mg kg−1), followed by α-tocotrienol (2.5 mg kg−1), γ-tocopherol (4.5 mg kg−1) and β-tocopherol (1.9 mg kg−1), while δ-tocopherol was not detected. Moreover, 14 fatty acids were found and, among them, oleic acid (76.1%), linoleic acid (8.1%) palmitic acid (8.7%) and stearic acid (2.5%) were the major fatty acids detected. Finally, heat map and principal component analysis allowed us to classify the studied provinces in terms of VOO chemical composition: Chefchaouen (tyrosol and hydroxytyrosol), Taounate (oleuropein aglycone), Errachidia (ferulic acid, w-3 and w-6), Beni Mellal (oleocanthal) and Taza (luteolin and oleic acid).  相似文献   

8.
We describe a precise and accurate method for the direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method is validated by the comparative analysis of the same water with and without cation-exchange resin purification. The work indicates that isobarically interfering elements can be corrected for when 87Rb/86Sr < 0.05 (Rb/Sr < 0.015), and that the matrix elements (Ca, Mg, K and Na) have no significant effect on the accuracy of the Sr isotope data. The method is simple, rapid, eliminates sample preparation time, and avoids potential contamination during complicated sample-preparation procedures. Therefore, the high sample throughput inherent to the MC-ICP-MS can be fully exploited.  相似文献   

9.
An effective, rapid and simple analytical method for the determination of Na, K, Ca, Mg, Cd, Pb, Ba, Fe, Mn, Sr, Zr, Cu, Zn and Al at mg kg−1 levels in the ultrapure salts MgCl2 and CaCl2 using optical emission spectrometry was developed. Optimisation of the operation conditions was performed with real samples of ultrapure MgCl2 and CaCl2. The results of the determination with multi-elemental water standards were compared to the internal standardisation, the standard addition method, and the maximum allowable content of the above mentioned elements in pure chemicals. The method was shown to be very sensitive with the following limits of detection: Na 1.01, K 3.12, Ca 0.263, Mg 0.275, Cd 0.0832, Pb 0.482, Ba 0.0153, Fe 0.0528, Mn 0.0473, Sr 0.0203, Zr 0.638, Cu 0.0732, Zn 0.0686 and Al 0.459 (all in mg kg−1). The method exhibited satisfactory precision, high analytical recoveries, linear responses of an accuracy of at least 4 orders of magnitude and low contamination susceptibility.  相似文献   

10.
Today, 44Sc is an attractive radionuclide for molecular imaging with PET. In this work, we evaluated a 44Ti/44Sc radionuclide generator based on TEVA resin as a source of 44Sc. The generator prototype (5 MBq) exhibits high 44Ti retention and stable yield of 44Sc (91 ± 6 %) in 1 mL of eluate (20 bed volumes, eluent—0.1 M oxalic acid/0.2 M HCl) during one year of monitoring (more than 120 elutions). The breakthrough of 44Ti did not exceed 1.5 × 10−5% (average value was 6.5 × 10−6%). Post-processing of the eluate for further use in radiopharmaceutical synthesis was proposed. The post-processing procedure using a combination of Presep® PolyChelate and TK221 resins made it possible to obtain 44Sc-radioconjugates with high labeling yield (≥95%) while using small precursor amounts (5 nmol). The proposed method takes no more than 15 min and provides ≥90% yield relative to the 44Sc activity eluted from the generator. The labeling efficiency was demonstrated on the example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis. Some superiority of PSMA-I&T over PSMA-617 in terms of 44Sc labeling efficiency was demonstrated (likely due to presence of DOTAGA chelator in the precursor structure). It was also shown that microwave heating of the reaction mixture considerably shortened the reaction time and improved radiolabeling yield and reproducibility of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis.  相似文献   

11.
Background: Radionuclides emitting Auger electrons (AEs) with low (0.02–50 keV) energy, short (0.0007–40 µm) range, and high (1–10 keV/µm) linear energy transfer may have an important role in the targeted radionuclide therapy of metastatic and disseminated disease. Erbium-165 is a pure AE-emitting radionuclide that is chemically matched to clinical therapeutic radionuclide 177Lu, making it a useful tool for fundamental studies on the biological effects of AEs. This work develops new biomedical cyclotron irradiation and radiochemical isolation methods to produce 165Er suitable for targeted radionuclide therapeutic studies and characterizes a new such agent targeting prostate-specific membrane antigen. Methods: Biomedical cyclotrons proton-irradiated spot-welded Ho(m) targets to produce 165Er, which was isolated via cation exchange chromatography (AG 50W-X8, 200–400 mesh, 20 mL) using alpha-hydroxyisobutyrate (70 mM, pH 4.7) followed by LN2 (20–50 µm, 1.3 mL) and bDGA (50–100 µm, 0.2 mL) extraction chromatography. The purified 165Er was radiolabeled with standard radiometal chelators and used to produce and characterize a new AE-emitting radiopharmaceutical, [165Er]PSMA-617. Results: Irradiation of 80–180 mg natHo targets with 40 µA of 11–12.5 MeV protons produced 165Er at 20–30 MBq·µA−1·h−1. The 4.9 ± 0.7 h radiochemical isolation yielded 165Er in 0.01 M HCl (400 µL) with decay-corrected (DC) yield of 64 ± 2% and a Ho/165Er separation factor of (2.8 ± 1.1) · 105. Radiolabeling experiments synthesized [165Er]PSMA-617 at DC molar activities of 37–130 GBq·µmol−1. Conclusions: A 2 h biomedical cyclotron irradiation and 5 h radiochemical separation produced GBq-scale 165Er suitable for producing radiopharmaceuticals at molar activities satisfactory for investigations of targeted radionuclide therapeutics. This will enable fundamental radiation biology experiments of pure AE-emitting therapeutic radiopharmaceuticals such as [165Er]PSMA-617, which will be used to understand the impact of AEs in PSMA-targeted radionuclide therapy of prostate cancer.  相似文献   

12.
Summary A new gas chromatographic method using an automatic purge-and-trap system coupled to a GC with mass selective detection to analyze styrene at the parts-per-trillions (ng kg–1) level is described. The method shows a good sensitivity and the detection limit is 10 ng kg–1 with a relative standard deviation (RSD) of 4.7% for 164 ng kg–1 styrene in olive oil. This analytical method has been successfully applied to the analysis of styrene in extra-virgin olive oil from the European market.  相似文献   

13.
Supramolecular oleogel is a soft material with a three-dimensional structure, formed by the self-assembly of low-molecular-weight gelators in oils; it shows broad application prospects in the food industry, environmental protection, medicine, and other fields. Among all the gelators reported, amino-acid-based compounds have been widely used to form organogels and hydrogels because of their biocompatibility, biodegradation, and non-toxicity. In this study, four Nα, Nε-diacyl-l-lysine gelators (i.e., Nα, Nε-dioctanoyl-l-lysine; Nα, Nε-didecanoyl-l-lysine; Nα, Nε-dilauroyl-l-lysine; and Nα, Nε-dimyristoyl-l-lysine) were synthesized and applied to prepare oleogels in four kinds of vegetable oils. Gelation ability is affected not only by the structure of the gelators but also by the composition of the oils. The minimum gel concentration (MGC) increased with the increase in the acyl carbon-chain length of the gelators. The strongest gelation ability was displayed in olive oil for the same gelator. Rheological properties showed that the mechanical strength and thermal stability of the oleogels varied with the carbon-chain length of the gelators and the type of vegetable oil. The microstructure of oleogels is closely related to the carbon-chain length of gelators, regardless of oil type. The highest oil-binding capacity (OBC) was obtained in soybean oil for all four gelators, and Nα, Nε-dimyristoyl-l-lysine showed the best performance for entrapping oils.  相似文献   

14.
A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.  相似文献   

15.
The lack of interest in the determination of toxic elements in liquids for electronic cigarettes (e-liquids) has so far been reflected in the scarce number of accurate and validated analytical methods devoted to this aim. Since the strong matrix effects observed for e-liquids constitute an exciting analytical challenge, the main goal of this study was to develop and validate an ICP-MS method aimed to quantify 23 elements in 37 e-liquids of different flavors. Great attention has been paid to the critical phases of sample pre-treatment, as well as to the optimization of the ICP-MS conditions for each element and of the quantification. All samples exhibited a very low amount of the elements under investigation. Indeed, the sum of their average concentration was of ca. 0.6 mg kg−1. Toxic elements were always below a few tens of a μg per kg−1 and, very often, their amount was below the relevant quantification limits. Tobacco and tonic flavors showed the highest and the lowest concentration of elements, respectively. The most abundant elements came frequently from propylene glycol and vegetal glycerin, as confirmed by PCA. A proper choice of these substances could further decrease the elemental concentration in e-liquids, which are probably barely involved as potential sources of toxic elements inhaled by vapers.  相似文献   

16.
We have determined δ13C, δ2H and δ18O isotopic abundances in Andalusian olive oils. In addition, the fatty acid composition and the distribution of isomers at positions 1,3 and 2 of glycerol were determined by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, respectively. Isotopic results obtained for four series of oil samples extracted from olives harvested in the 2004/05 and 2005/06 seasons are discussed in terms of olive variety, ripeness, geographical origin, fatty acid composition and growing altitude. A distinction was also established between olives grown in irrigated and in dry land by studying selected samples of the previous series and others from the 2005/06, 2006/07, 2007/08 and 2008/09 seasons. The results showed that olive ripeness does not influence the abundance of any of the three isotopes studied. On the other hand, the olive variety influences the abundance of the oxygen and hydrogen isotopes, and also, less markedly, that of carbon. No clear‐cut effect of height or latitude on isotope values is observed, probably because the olive variety also changes with height and latitude, thus masking such influences. The oil samples from dryland‐grown olives had increased δ13C values relative to irrigation‐grown olives. In addition, no definite relationship appears to exist between isotope distribution and fatty acid composition. Finally, oil samples from olives harvested in the 2005/06 season in Italy could be distinguished from those from Spain in terms of their isotopic values (δ2H mainly). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A method for the determination of uranium and radium isotopes in water samples is proposed. Liquid scintillation techniques were used for collecting alpha spectra, which were then analyzed by fitting the alpha peaks with overlapping Gaussians. The analysis can quantify the observed isotopes with accuracy depending on the activity of each isotope.In order to simulate the peaks with Gaussian normal distribution functions, the centroid of each peak as well as the full width at half maximum (FWHM) are required, as they depend on the quenching of the sample. For this purpose, samples with known activities of 226Ra and its decay products and also of the uranium isotopes 238U and 234U, at various quenching levels, were used to establish the correlation of the peaks’ shift with the quench effect. In addition, the correlation of the FWHM with the centroid of a peak was determined, using the same procedure.Following the above analysis technique, an average of 97 ± 2% of detection efficiency and a lower limit of detection of 8.2 mBq kg−1 for alpha isotopes were achieved.  相似文献   

18.
The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.  相似文献   

19.
The use of growth-promoting antibiotics in livestock faces increasing scrutiny and opposition due to concerns about the increased occurrence of antibiotic-resistant bacteria. Alternative solutions are being sought, and plants of Lamiaceae may provide an alternative to synthetic antibiotics in animal nutrition. In this study, we extracted essential oil from Monarda didyma, a member of the Lamiaceae family. We examined the chemical composition of the essential oil and then evaluated the antibacterial, antioxidant, and anti-inflammatory activities of M. didyma essential oil and its main compounds in vitro. We then evaluated the effectiveness of M. didyma essential oil in regard to growth performance, feed efficiency, and mortality in both mice and broilers. Carvacrol (49.03%) was the dominant compound in the essential oil extracts. M. didyma essential oil demonstrated antibacterial properties against Escherichia coli (MIC = 87 µg·mL−1), Staphylococcus aureus (MIC = 47 µg·mL−1), and Clostridium perfringens (MIC = 35 µg·mL−1). Supplementing the diet of mice with essential oil at a concentration of 0.1% significantly increased body weight (+5.4%) and feed efficiency (+18.85%). In broilers, M. didyma essential oil significantly improved body weight gain (2.64%). Our results suggest that adding M. didyma essential oil to the diet of broilers offers a potential substitute for antibiotic growth promoters.  相似文献   

20.
Artificial long-lived radionuclides such as 90Sr and 239,240Pu have been long released into the environment by human nuclear activities, which have a profound impact on the ecological environment. It is of great significance to monitor the concentration of these radionuclides for environmental safety. This paper summarizes and critically discusses the separation and measurement methods for ultra-trace determination of 90Sr, 239Pu, and 240Pu in the environment. After selecting the measurement method, it is necessary to consider the decontamination of the interference from matrix elements and the key elements, and this involves the choice of the separation method. Measurement methods include both radiometric methods and non-radiometric methods. Radiometric methods, including alpha spectroscopy, liquid scintillation spectrometry, etc., are commonly used methods for measuring 239+240Pu and 90Sr. Mass spectrometry, as the representative of non-radiometric measurement methods, has been regarded as the most promising analytical method due to its high absolute sensitivity, low detection limit, and relatively short sample-analysis time. Through the comparison of various measurement methods, the future development trend of radionuclide measurement is prospected in this review. The fully automatic and rapid analysis method is a highlight. The new mass spectrometer with ultra-high sensitivity shows strong analytical capabilities for extremely low concentrations of 90Sr, 239Pu, and 240Pu, and it is expected to develop determination methods with higher sensitivity and lower detection limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号