首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extensive use of circular cylindrical shells in modern industrial applications has made their analysis an important research area in applied mechanics. In spite of a large number of papers on cylindrical shells, just a small number of these works is related to the analysis of orthotropic shells. However several modern and natural materials display orthotropic properties and also densely stiffened cylindrical shells can be treated as equivalent uniform orthotropic shells. In this work, the influence of both material properties and geometry on the non-linear vibrations and dynamic instability of an empty simply supported orthotropic circular cylindrical shell subjected to lateral time-dependent load is studied. Donnell׳s non-linear shallow shell theory is used to model the shell and a modal solution with six degrees of freedom is used to describe the lateral displacements of the shell. The Galerkin method is applied to derive the set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge–Kutta method. The obtained results show that the material properties and geometric relations have a significant influence on the instability loads and resonance curves of the orthotropic shell.  相似文献   

2.
In this paper, the governing equations for non-linear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin’s method, these equations are reduced to a time dependent non-linear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the non-linear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases.  相似文献   

3.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

4.
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the non-linear responses and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.  相似文献   

5.
6.
This paper presents a new perturbation method of analysis applicable to a class of geometrically non-linear problems of shells, plates, and membranes with translationally restrained edges. The perturbation parameter is a linear function of Poisson's ratio. The convergence of successive perturbations (i.e., approximations) is independent of the magnitudes of deflections. The method also offers a rational explanation of the efficacy of Berger's approximate equations, thus placing Berger's method on a firmer foundation while at the same time weakening his hypothesis of vanishing second membrane strain invariant in the strain energy integral. Several solutions and results are obtained for the purposes of illustration and discussion. Whenever possible, calculated values are compared with results obtained by other means.  相似文献   

7.
采用格林函数法,导出了U型波纹管圆环壳部分和截头扁锥壳部分的非线性的积分方程,其中的四个未知参数由圆环壳和截头扁锥壳的连接条件确定,联合应用梯度法和积分方程迭代法建立了U型波纹管大挠度分析的迭代算法,开发了相应的程序系统,数值结果表明,本文方法具有较高的精度,压缩角对峰值应力和刚度影响十分显著,应用作为波纹管设计的重要参数。  相似文献   

8.
The non-linear vibration of simply supported, circular cylindrical shells is analysed. Geometric non-linearities due to finite-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory; the effect of viscous structural damping is taken into account. A discretization method based on a series expansion of an unlimited number of linear modes, including axisymmetric and asymmetric modes, following the Galerkin procedure, is developed. Both driven and companion modes are included, allowing for travelling-wave response of the shell. Axisymmetric modes are included because they are essential in simulating the inward mean deflection of the oscillation with respect to the equilibrium position. The fundamental role of the axisymmetric modes is confirmed and the role of higher order asymmetric modes is clarified in order to obtain the correct character of the circular cylindrical shell non-linearity. The effect of the geometric shell characteristics, i.e., radius, length and thickness, on the non-linear behaviour is analysed: very short or thick shells display a hardening non-linearity; conversely, a softening type non-linearity is found in a wide range of shell geometries.  相似文献   

9.
This paper investigates the non-linear free vibration of prestressed plates and shells in a general form. The analysis includes the effects of in-plane inertia. The analysis is based on the non-linear equations of motion and uses a perturbation procedure. No assumption is made a priori for the form of the time or space mode. The boundary conditions are treated in a general manner including boundary conditions where non-linear stress resultants are specified. The method is illustrated by three examples.  相似文献   

10.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

11.
Based on Timoshenko-Mindlin kinematic hypotheses and Hamilton'sprinciple,a dynamic non-linear theory for general laminated circular cylindrical shellswith transverse shear deformation is developed.A multi-mode solution for periodic in-plane loads is formulated for the non-linear dynamic stability of an anti-symmetricangle-ply cylinder with its ends elastically restrained against rotation.The resultedequations in terms of time function are solved by the incremental harmonic balancemethod.  相似文献   

12.
Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the non-linear response of the shells are described. A high-fidelity non-linear analysis procedure has been used to predict the non-linear response of the shells. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate the complex non-linear response of a compression-loaded shell with an unreinforced cutout. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex non-linear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, results are presented that show how certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.  相似文献   

13.
A geometrically non-linear theory is developed for shells of generic shape allowing for third-order thickness and shear deformation and rotary inertia by using eight parameters; geometric imperfections are also taken into account. The geometrically non-linear strain–displacement relationships are derived retaining full non-linear terms in all the 8 parameters, i.e. in-plane and transverse displacements, rotations of the normal and thickness deformation parameters; these relationships are presented in curvilinear coordinates, ready to be implemented in computer codes. Higher order terms in the transverse coordinate are retained in the derivation so that the theory is suitable also for thick laminated shells. Three-dimensional constitutive equations are used for linear elasticity. The theory is applied to circular cylindrical shells complete around the circumference and simply supported at both ends to study initially static finite deformation. Both radially distributed forces and displacement-dependent pressure are used as load and results for different shell theories are compared. Results show that a 6 parameter non-linear shell theory is quite accurate for isotropic shells. Finally, large-amplitude forced vibrations under harmonic excitation are investigated by using the new theory and results are compared to other available theories. The new theory with non-linearity in all the 8 parameters is the only one to predict correctly the thickness deformation; it works accurately for both static and dynamics loads.  相似文献   

14.
This article considers the thermoelastic stability of bimetallic shallow shells of revolution. Basic equations are derived from Reissner’s non-linear theory of shells by assuming that deformations and rotations are small and that materials are linear elastic. The equations are further specialized for the case of a closed spherical cup. For this case the perturbated initial state is considered and it is shown that only in the cases when the cup edge is free or simply supported buckling under heating is possible. Further the perturbated flat state is considered and the critical temperature for buckling is calculated for the case of free and simply supported edges. The temperature–deflection diagrams are calculated by the use of the collocation method for shallow spherical, conical and cubic shells.  相似文献   

15.
In this paper, a theory for non-linear thermal stability of open bimetallic shallow shells of revolution under a uniform temperature field is developed. To apply the theory to the particular case of some elastic elements in precision instruments, this paper discusses two important kinds of shells, the bimetallic shallow spherical shell with a circular hole at the center and the bimetallic truncated shallow conical shell. The more accurate solutions are obtained by the modified iteration method. All results are expressed in curves which may be applied directly to the design of the elastic elements.  相似文献   

16.
Governing non-linear integro-differential equations for cylindrically orthotropic shallow spherical shells resting on linear Winkler-Pasternak elastic foundations, undergoing moderately large deformations are presented. Three problems, namely, non-linear static deflection response, non-linear dynamic deflection response and dynamic snap-through buckling of orthotropic shells have been investigated. The influences of material orthotropy, foundation parameters and shell-material damping on the deflection response are determined for the clamped and the simply- supported immovable edge conditions accurately. Orthotropy, foundation interaction and material damping play significant roles in improving the load carrying capacity of the shell structures.  相似文献   

17.
An optimal design technique developed earlier for axisymmetric plates and circular cylindrical shells is accommodated for shallow spherical shells subjected to uniform transverse pressure. Material of the shells is assumed to be rigid-plastic obeying the von Mises yield condition and the associated deformation law. The post-yield behaviour of the shells is taken into account. The weight minimization is performed under the condition that the maximal deflection of the shell of variable thickness coincides with the deflection of the reference shell of constant thickness. The problem is transformed into a non-linear boundary value problem which is solved numerically.  相似文献   

18.
We show how to determine the midsurface of a deformed thin shell from the following set of data: known geometry of the undeformed midsurface, the surface strains and the surface bendings. It is assumed that the two latter fields had been obtained beforehand by solving a problem posed for the so-called intrinsic field equations of the non-linear theory of thin shells. Two different methods of determining the deformed midsurface in space are worked out: (a) directly from its first and second fundamental form using some results from mathematical analysis; (b) integrating the system of first-order PDEs for the surface deformation gradient. In both cases the corresponding integrability conditions are discussed; it is shown that they are equivalent to the compatibility conditions of the non-linear theory of thin shells.  相似文献   

19.
In the present paper, the ELF (element-based Lagrangian formulation) 9-node ANS (assumed natural strain) shell element was combined with the spring element for geometrically non-linear analysis of plates and shells sustained by arbitrary elastic edge supports that are subjected to variation in loading.This particular spring element serves as tool for modeling an arbitrary elastic edge support with 6 DOF (degrees of freedom). The elastic edge support was modeled by combining different spring models. The ANS method was used to overcome shear and membrane locking problems inherent in some thin plate and shell problems. In the formulation of the ELF characteristic arrays, the expression of element strains was adopted in the framework of the element natural coordinates. The non-linear analysis results of idealized edge supports were validated against the reference solutions available in the literature. As a result of the numerical test, the combination of the ELF 9-node shell element and spring element shows an exceptional performance for non-linear analysis of plates and shells under elastic edge supports.  相似文献   

20.
A dynamic, shear deformation theory of a doubly curved shell is used to develop a finite element for geometrically non-linear (in the von Karman sense) transient analysis of laminated composite shells. The element is employed to determine the transient response of spherical and cylindrical shells with various boundary conditions and loading. The effect of shear deformation and geometric non-linearity on the transient response is investigated. The numerical results presented here for transient analysis of laminated composite shells should serve as references for future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号