首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This critical review aims to update the recent development in the selective oxidation of organic compounds by gold catalysis, highlighting the progress in the last three years. Following the impressive developments in the last decades, several protocols for catalytic oxidation are today available, which are based on the extraordinary properties of gold in terms of catalytic activity, selectivity, reusability and resistance to poisons. Beside many other applications, gold can be recommended for green processes dedicated to fine chemicals, pharmaceuticals and the food industry owing to its recognized bio-compatibility. The collected literature is focused on experiments concerning the oxidation of different chemical groups and could be of interest, in the wide area of organic chemistry, for improving previous processes or for exploring new catalytic pathways (174 references).  相似文献   

2.
Synthesis of glyoxalic acid by selective oxidation of glyoxal at ambient temperatures with O2 as an oxidant is an important problem. We found that gold nanoparticles supported on hydrotalcite (Au/HT) exhibit an appreciable catalytic activity for this reaction in the liquid phase. Moreover, Au-Pd/HT, prepared by the deposition-precipitation method is superior in the catalytic behavior to monometallic Au/HT and Pd/HT catalysts. Introduction of palladium enhances ability of the catalysts to oxidize carbonyl to carboxyl, weakens the power to rupture C-C bond and in this way improves the catalytic performance. Furthermore, the Au: Pd ratio also influences the properties of the alloy catalysts. The 1.5Au-1.5Pd/HT catalysts show the highest activity for the selective oxidation at ambient temperature producing glyoxalic acid in 13.4% yield at pH 7.7. Moreover, due to basic properties of hydrotalcite, glyoxalic acid could be synthesized over 1.5Au-1.5Pd/HT in 8.0% yield without adding a base. It is hoped that results of this study can fuel further research in designing new catalysts with alloy nanoparticles supported by hydrotalcite that can be used for the selective oxidation of other useful compounds.  相似文献   

3.
With advances in cluster chemistry, atomically precise gold nanoclusters(NCs) with well-defined composition and tunable structure provide an exciting opportunity to uncover the specific roles of the geometrical and electronic structures as well as the capped ligands in overall catalytic performances. The Au NCs possess quantum energy levels and unique optical properties,which have exhibited unexpected photocatalytic and electrocatalytic activities. In this review, we first highlight the electrocatalytic applications of Au NCs, including hydrogen evolution reaction, oxygen reduction reaction, CO_2 reduction and catalytic oxidation reactions, and then present Au NCs-driven photocatalytic applications such as selective organic reactions, decomposition of pollutants and energy conversion reactions. Finally, we conclude this review with a brief perspective on the catalytic field of Au NCs.  相似文献   

4.
Synthetic organic chemistry has been markedly affected by the booming of gold catalysis over the past decade. The renaissance of this coinage metal allowed unprecedented transformations to be realized in a highly selective manner and rendered "old chemistry" more accessible from a practical point of view. Particularly, organic compounds containing C-C multiple bonds benefited from the high carbophilicity of gold species, that opened access to a great chemical diversity through direct and selective π-electrophilic activations. Nowadays, the complexity of naturally occurring compounds based on functionalized aromatic frameworks continues to inspire and influence developments in synthetic chemistry. Furthermore, the ubiquitous presence of arene-based systems in pharmaceuticals, agrochemicals, and functional organic materials warrants the growing demand for mild, selective and sustainable synthetic routes to their preparation. In this context, although the peculiar aptitude of gold salts/complexes for interaction with aromatic compounds (auration process) has long been known, the direct catalytic gold decoration of arenes, has risen to prominence only recently. Here, the extensive use of electrophilic activation of C-C multiple bonds by gold species deserves a prominent mention, and the great strides made in the field over the last few years are described in this tutorial review.  相似文献   

5.
Precisely tuning the nuclearity of supported metal nanoclusters is pivotal for designing more superior catalytic systems, but it remains practically challenging. By utilising the chemical and molecular specificity of UiO-66-NH2 (a Zr-based metal–organic framework), we report the controlled synthesis of supported bi- and trinuclear Cu-oxo nanoclusters on the Zr6O4 nodal centres of UiO-66-NH2. We revealed the interplay between the surface structures of the active sites, adsorption configurations, catalytic reactivities and associated reaction energetics of structurally related Cu-based ‘single atoms’ and bi- and trinuclear species over our model photocatalytic formic acid reforming reaction. This work will offer practical insight that fills the critical knowledge gap in the design and engineering of new-generation atomic and nanocluster catalysts. The precise control of the structure and surface sensitivities is important as it can effectively lead to more reactive and selective catalytic systems. The supported bi- and trinuclear Cu-oxo nanoclusters exhibit notably different catalytic properties compared with the mononuclear ‘Cu1’ analogue, which provides critical insight for the engineering of more superior catalytic systems.

The controlled synthesis of novel bi- and trinuclear Cu-oxo nanoclusters supported on UiO-66-NH2 that show notably different catalytic properties in the photocatalytic formic acid decomposition reaction is reported.  相似文献   

6.
This critical review is intended to attract the interest of organic chemists and researchers on green and sustainable chemistry on the catalytic activity of supported gold nanoparticles in organic transformations. In the general part of this critical review, emphasis is given to the different procedures to form supported gold nanoparticles and to the importance of the support cooperating in the catalysis. Also the convergence of homogeneous and heterogeneous catalysis in the study of gold nanoparticles has been discussed. The core part of this review is constituted by sections in which the reactions catalyzed by supported gold nanoparticles are described. Special emphasis is made on the unique ability of gold catalysts to promote additions to multiple C-C bonds, benzannulations and alcohol oxidation by oxygen (282 references).  相似文献   

7.
We describe the electrocatalytic properties of self-supported Pt-decorated nanoporous gold (Pt-NPG) membranes towards the electrooxidation of formic acid and some other small organic molecules. By effectively enhancing the Pt utilization and providing a unique surface structure, the electrooxidation of formic acid on Pt-NPG was found to be highly sensitive to its surface structure. An unparalleled increase by nearly two orders of magnitude in catalytic activity was achieved on NPG electrodes decorated with sub-monolayer Pt atoms, as compared to the commercial Pt/C catalyst under the same testing conditions.  相似文献   

8.
金纳米颗粒在烯烃加氢、水气转化、过氧化氢直接合成和醇类选择性氧化等反应中表现出独特的催化性能,引起了人们广泛关注.通常,金纳米颗粒的催化活性受到尺寸、原子堆积形式、暴露晶面及其与载体的相互作用所影响.而金纳米颗粒的烧结往往导致其催化效率迅速下降.为了解决金颗粒烧结问题,提高其使用寿命,必须控制高温处理时颗粒和原子的迁移.尽管已有很多工作见诸报道,然而到目前为止,仍未完全解决金颗粒烧结问题.本文通过调整有机模板剂和反应温度成功地合成了不同窗口尺寸的立方介孔氧化硅材料(FDU-12),并将预先合成的3 nm金颗粒负载于其上,考察了窗口尺寸对金颗粒烧结的影响.首先,采用小角X射线散射、氮气吸附-脱附、透射电镜和扫描电镜等手段证实成功合成了具有亚5 nm窗口的FDU-12材料,同时以3 nm金颗粒为探针,进一步区分了具有<3 nm和3?5 nm窗口的FDU-12样品.在抗烧结实验中发现,具有3?5 nm窗口尺寸的FDU-12能够在一个较宽的金负载量(1.0?8.3 wt%)下稳定金纳米颗粒.在550oC空气中焙烧5 h后,金颗粒的平均尺寸维持在4.5?5.0 nm.更小的窗口尺寸则会导致3 nm金颗粒无法进入FDU-12孔道,从而带来低的负载能力和差的抗烧结性能.另一方面,具有>7 nm窗口尺寸的FDU-12则只在高的金颗粒负载量(>9 wt%)下才表现出较好的抗烧结性能,低负载量时烧结严重(2.1 wt%,14.2?5.5 nm).我们推测,合适的窗口尺寸(3?5 nm)恰好能允许3 nm金颗粒进入FDU-12的孔道,在高温处理过程中,当金颗粒长大到5 nm左右时,窗口极大地限制了金颗粒的移动,导致其不能在孔与孔之间自由迁移.此外,该FDU-12材料的孔径为18 nm,这使得封装在各个孔内部的金颗粒与其他金颗粒距离较远,不利于其通过原子迁移而发生烧结.因此,拥有3?5 nm窗口尺寸的FDU-12在一个宽的金负载量下表现出良好的抗烧结能力.而对于具有>7 nm窗口尺寸的FDU-12,在高的金负载量下,它可通过自聚焦效应抑制原子迁移,从而具有优良的抗烧结性能.但在低负载量时,介孔氧化硅的绝大部分孔内并不包含多个金颗粒,自聚焦效应无法发挥作用,在高温焙烧时金颗粒可以通过大的窗口尺寸相互融合导致烧结.我们将具有不同金尺寸的AuNP/FDU-12催化剂用于环己醇选择性氧化反应中.结果表明,4.5 nm的金催化剂表现出最好的活性(1544 mmol gAu-1 h-1)和大于99%的选择性(230oC),大大超过了先前报道的基于Ag和Mn为活性中心的催化剂.另外,与负载在商用γ-Al2O3上相比,AuNP/FDU-12体系表现出了很好的选择性,直接脱水产物小于1%.同时可以保持100 h内金颗粒不发生烧结,活性不明显下降.  相似文献   

9.
Dinuclear gold complexes have the ability to interact with one or more substrates in a dual‐activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold‐based catalytic system by site‐isolation of mononuclear gold complexes by selective encapsulation. The typical dual‐activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.  相似文献   

10.
The efficient utilization of renewable lignocellulosic biomass has attracted much attention in recent years. One of the most desirable routes for the transformation of cellulose, the main component of lignocellulosic biomass, is to convert cellulose under mild conditions selectively into a value-added chemical or into a platform compound, which can be easily converted to versatile chemicals or fuels in the subsequent step. The activation of cellulose, typically starting by the cleavage of its glycosidic bonds, under mild conditions and the selective formation of a particular molecule are critical challenges. Bifunctional catalysts coupling the acid sites for the activation of the glycosidic bonds via hydrolysis and the metal nanoparticles for the hydrogenation or oxidation of glucose intermediate have shown promising performances for the conversion of cellulose or cellobiose into hexitols or gluconic acid in water under mild conditions. This short review has summarized some recent studies on the development of such bifunctional catalysts or catalytic systems. The following two kinds of bifunctional catalysts or catalytic systems have mainly been discussed: (1) a liquid acid in combination with a supported metal catalyst, (2) solid acid-supported metal nanoparticles. Emphases have been laid on the conversions of cellulose or cellobiose into sorbitol and gluconic acid catalyzed respectively by ruthenium and gold nanoparticles loaded on carbon nanotubes bearing acid sites.  相似文献   

11.
A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into carboxylic acid while alcoholic hydroxyl group stays intact in selective oxidation of 4-(hydroxymethyl)-benzaldehyde. The heterogeneous catalysis system is composed of soluble catalysts and insoluble substrate. The gold catalyst is prepared, preserved and applied for catalytic oxidation all in water. After reaction conditions are optimized, H\begin{document}$_2$\end{document}O\begin{document}$_2$\end{document} is found to be the best oxidizing agent with complete conversion. Besides, the gold catalyst displays good versitility for aldehyde derivatives. After reaction completes, organic components are extracted by organic solvent and gold NPs in water are separated and recycled.  相似文献   

12.
 采用化学还原法制备了聚乙烯吡咯烷酮 (PVP) 稳定的纳米 Au 溶胶, 这种 Au 溶胶在葡萄糖空气氧化制葡萄糖酸反应中具有良好的催化性能. 考察了 PVP 加入量和氯金酸前驱液的浓度对反应活性的影响. 紫外-可见吸收光谱和透射电镜分析结果表明, 含有较小 Au 粒子的 Au 溶胶体系具有较高的催化活性. 当 PVP/Au 质量比为 40, 氯金酸浓度为100 μg/ml 时, 得到稳定的 Au 溶胶体系具有金粒子尺寸小、分布均匀的特点, 对葡萄糖氧化反应活性高, 葡萄糖的转化率达到 54.4%.  相似文献   

13.
N-杂环卡宾催化选择性有机反应的新进展   总被引:1,自引:1,他引:0  
蔡小华  谢兵 《应用化学》2013,30(2):123-133
近年来,有关N-杂环卡宾(NHC)的合成、催化性能及其应用得到了快速发展,特别是在催化选择性有机反应领域,NHC类催化剂显示出催化效率高、选择性好及性能优异等特点,而引起人们极大的关注。 本文从区域选择性、顺反异构选择性及手性选择性等方面综述了NHC催化选择性有机反应的最新进展,并予以了展望。  相似文献   

14.
贾丽凤  何涛  李志鹏  李雪梅 《催化学报》2010,31(11):1307-1315
 贵金属纳米粒子由于其小尺寸效应而表现出特殊的催化性能. 综述了纳米 Au 粒子表面配位催化剂的制备方法及其在催化中的应用. 由于 Au 可与硫化物形成配位键, 所以硫化物可在 Au 表面形成有序单分子膜. 单分子膜保护的 Au 纳米粒子具有非常好的溶解性、分散性、稳定性, 以及由不同的表面功能团而导致的不同的催化性能. 该催化体系兼具均相催化剂和多相催化剂的特点, 这对开发新型催化剂具有重要的理论和实际意义.  相似文献   

15.
We report a simple method of catalytic deposition of Pb on a gold nanofilm substrate, which was in situ prepared and used as nanocrystal seeds. Due to the unique properties of gold nanocrystal seeds, Pb could be catalytically deposited on the surface of the gold nanofilm. Compared with the deposition of Pb on bare gold electrode, a larger amount of Pb was deposited on the gold nanofilm and the electrical response was amplified significantly. The catalytic deposition of Pb on the gold nanofilm was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. A stable and quasi-reversible redox couple was obtained in neutral solution and studied in detail. The surface of the gold nanofilm could be easily regenerated in 0.1 mol L(-1) nitric acid solution. Since the redox peaks of Pb could be effectively separated from those of other metals such as Cu, Cd, and Zn, a selective determination of Pb2+ was achieved. Linear sweep voltammetry (LSV) was used for the determination of Pb2+. The peak currents of Pb varies linearly with the concentration of Pb2+ in aqueous solution ranging from 1.0 to 10.0 micromol L(-1) (R=0.999), with a detection limit of 0.1 micromol L(-1). It is expected that the gold nanofilm will facilitate the appearance of heavy metal ion sensors with good performance.  相似文献   

16.
Gold standard: The title gold complex was characterized unambiguously as an important intermediate in the title reaction. Protonolysis of this vinyl gold(I) complex was critical for regeneration of the active gold(I) species for the catalytic cycle, and use of a protic acid co-catalyst significantly lowered the required catalyst loading to 0.5?mol?%.  相似文献   

17.
The catalytic oxidation of biomass-derived polyhydroxyl compounds provides an efficient and green route for biomass resource utility. Gold nanocrystals supported on Mg(OH)2 were synthesized by sol-immobilization method, characterized by XRD, TEM, UV-vis DRS, and tested in the selective oxidation of 1,2-propanediol to lactic acid. The gold particle size and the ratio of Au to 1,2-propanediol strongly influenced the catalytic activity. Over Au/Mg(OH)2 with the majority of gold particles concentrated in 14–18 nm, excellent catalytic performance with 94.4% conversion and 89.3% selectivity to lactic acid has been achieved under 0.3 MPa O2 at 60 °C for 6 h.  相似文献   

18.
Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water‐ and organo‐dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4‐nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4‐nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo‐dispersible gold nanoparticles.  相似文献   

19.
In this communication, solid-phase reactions for the synthesis of Lys-monofunctionalized gold nanoparticles are described. A controlled and selective fabrication of linear nanoparticle arrays can be achieved through peptide linkage systems, and therefore it is essential to prepare Fmoc amino acid nanoparticle building blocks susceptible to Fmoc solid-phase peptide synthesis. Gold nanoparticles containing carboxylic acids (2) in the organic shell were covalently ligated to Lys on solid supports through amide bond coupling reactions. We employed Fmoc-Lys-substituted polymer resins such as Fmoc-Lys-Wang or Fmoc-Lys-HMPA-PEGA. The low density of Lys on the matrix enabled 2 nm-sized gold nanoparticles to react with Lys in a 1:1 ratio. Subsequent cleavage reactions using 60% TFA reagent resulted in Lys transfer from the solid matrix to gold nanoparticles, and the Fmoc-Lys-monofunctionalized gold nanoparticles (5) were obtained with 3-15% yield. Synthesis using HMPA-PEGA resin increased productivity due to the superior swelling properties of PEGA resin in DMF. Monofunctionalization of nanoparticles was microscopically characterized using TEM for the ethylenediamine-bridged nanoparticle dimers (6). By counting the number of 6, we found that at least 60% of cleaved nanoparticles were monofunctionalized by Lys. This method is highly selective and efficient for the preparation of monofunctionalized nanoparticles.  相似文献   

20.
Relativistic effects in the valence shell of the elements reach a maximum in the triad Pt-Au-Hg and determine their catalytic activity in organic reactions. In this Review we examine the catalytic activity of Pt, Au, and Hg compounds for some representative reactions, and discuss the respective benefits and disadvantages along with other relevant properties, such as toxicity, price, and availability. For the reactions considered, gold catalysts are generally more active than mercury or platinum catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号